The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II

被引:0
作者
Paulo Mendes Carvalho Neto
Renato Fehlberg Júnior
机构
[1] Federal University of Santa Catarina,Department of Mathematics
[2] Federal University of Espírito Santo,Department of Mathematics
来源
Fractional Calculus and Applied Analysis | 2024年 / 27卷
关键词
Riemann-Liouville fractional integral; Hardy-Littlewood Theorem; Bochner–Lebesgue space; Bounded operator; Compact operators; 26A33 (primary); 47G10; 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we study the Riemann-Liouville fractional integral of order α∈(0,1/p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1/p)$$\end{document} as an operator from Lp(I;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(I;X)$$\end{document} into Lq(I;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}(I;X)$$\end{document}, with 1≤q≤p/(1-pα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le q\le p/(1-p\alpha )$$\end{document}, whether I=[t0,t1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=[t_0,t_1]$$\end{document} or I=[t0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I=[t_0,\infty )$$\end{document} and X is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from Lp(t0,t1;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(t_0,t_1;X)$$\end{document} into Lq(t0,t1;X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{q}(t_0,t_1;X)$$\end{document}, when 1≤q<p/(1-pα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le q< p/(1-p\alpha )$$\end{document}.
引用
收藏
页码:1348 / 1368
页数:20
相关论文
共 12 条
[1]  
Carvalho Neto PM(2022)The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces I Commun. Pure Appl. Anal. 21 3667-3700
[2]  
Fehlberg Júnior R(2020)On the fractional version of Leibniz rule Math. Nachr. 293 670-700
[3]  
Carvalho Neto PM(2012)The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus Fract. Calc. Appl. Anal. 15 304-313
[4]  
Fehlberg Júnior R(2017)Erratum: The mean value theorems and a Nagumo-type uniqueness theorem for Caputo’s fractional calculus Fract. Calc. Appl. Anal. 20 1567-1570
[5]  
Diethelm K(1928)Some properties of fractional integral I Math. Z. 27 565-606
[6]  
Diethelm K(1998)Solution of some weight problems for the Riemann-Liouville and Weyl operators Georgian Math. J. 5 565-574
[7]  
Hardy GH(2000)On the Boundedness and compactness of a class of integral operators J. Lond. Math. Soc. 61 617-628
[8]  
Littlewood JE(1986)Compact sets in the space Ann. Mat. Pura Appl. 146 65-96
[9]  
Meskhi A(1956)On a theorem of Marcinkiewicz concerning interpolation of operations J. Math. Pures Appl. 9 223-248
[10]  
Prokhorov DV(undefined)undefined undefined undefined undefined-undefined