Operators of Fractional Calculus and Associated Integral Transforms of the (r,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathfrak {r}}, {\mathfrak {s}})$$\end{document}-Extended Bessel–Struve Kernel Function

被引:0
作者
Ritu Agarwal
Rakesh K. Parmar
S. D. Purohit
机构
[1] Malaviya National Institute of Technology,Department of Mathematics
[2] University College of Engineering and Technology,Department of HEAS
[3] Rajasthan Technical University,Department of HEAS
关键词
(;  )-Extended Bessel–Struve kernel function; Fractional calculus operators; Primary 26A33; 33B20; 33C20; Secondary 26A09; 33B15; 33C05;
D O I
10.1007/s40819-020-00927-x
中图分类号
学科分类号
摘要
Present paper contains Marichev–Saigo–Maeda fractional integration and differentiation formulas and certain Integral transforms of the involving (r,s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathfrak {r}}, {\mathfrak {s}})$$\end{document}-extended Bessel–Struve kernel function. Several particular cases of the leading findings are derived for the Saigo’s, Riemann–Liouville and Erdélyi–Kober fractional (arbitrary order) integration and fractional differentiation formulas.
引用
收藏
相关论文
共 46 条
[1]  
Choi J(2014)Extension of extended beta, hypergeometric and confluent hypergeometric functions Honam Math. J. 36 339-367
[2]  
Rathie AK(1997)Extension of Euler’s Beta function J. Comput. Appl. Math. 78 19-32
[3]  
Parmar RK(2011)Genearlization of extended beta function, hypergeometric and confluent hypergeometric functions Honam Math. J. 33 187-206
[4]  
Chaudhry MA(1998)Remarks on generalized beta function J. Math. Anal. Appl. 100 23-32
[5]  
Qadir A(2004)Extended hypergeometric and confluent hypergeometric functions Appl. Math. Comput. 159 589-602
[6]  
Rafique M(2017)Mathieu-type series built by Bull. Korean Math. Soc. 54 789-797
[7]  
Zubair SM(2017)-extended Gaussian hypergeometric function Results Math. 72 617-632
[8]  
Lee DM(2017)-extended Bessel and modified Bessel functions of the first kind J. Math. Anal. Appl. 448 12811-1304
[9]  
Rathie AK(2019)On extended Hurwitz–Lerch zeta function Miskolc Math. Notes 20 451-463
[10]  
Parmar RK(2005)On Integr. Transf. Spec. Funct. 16 39-55