A Mixed Finite-Element Method on Polytopal Mesh

被引:0
作者
Yanping Lin
Xiu Ye
Shangyou Zhang
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
[2] University of Arkansas at Little Rock,Department of Mathematics
[3] University of Delaware,Department of Mathematical Sciences
来源
Communications on Applied Mathematics and Computation | 2022年 / 4卷
关键词
Mixed finite-element methods; Second-order elliptic problem; Polytopal mesh; 65N15; 65N30; 35B45; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem. We establish optimal order error estimates for velocity and super convergence for pressure. Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory.
引用
收藏
页码:1374 / 1385
页数:11
相关论文
共 39 条
[1]  
Arnold D(1985)Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates RAIRO Model. Math. Anal. Numer. 19 7-32
[2]  
Brezzi F(1973)The finite element method with Lagrange multipliers Numer. Math. 20 179-192
[3]  
Babuska I(1987)Mixed finite elements for second order elliptic problems in three variables Numer. Math. 51 237-250
[4]  
Brezzi F(1985)Two families of mixed finite elements for second order elliptic problems Numer. Math. 47 217-235
[5]  
Douglas J(2017)Minimal degree Math. Comput. 86 2053-2087
[6]  
Duran R(2009) and SIAM J. Numer. Anal. 47 1319-1365
[7]  
Fortin M(2015) conforming finite elements on polytopal meshes Comptes Rendus Mathmatique 353 31-34
[8]  
Brezzi F(2003)Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems Russian J. Numer. Anal. Math. Model. 18 261-278
[9]  
Douglas J(2005)Hybrid high-order methods for variable-diffusion problems on general meshes J. Numer. Math. 13 33-51
[10]  
Marini LD(2011)New mixed finite element method on polygonal and polyhedral meshes J. Comput. Phys. 230 305-328