Some generalizations for singular value inequalities of compact operators

被引:0
作者
Wasim Audeh
机构
[1] University of Petra,
来源
Advances in Operator Theory | 2021年 / 6卷
关键词
Singular value; Compact operator; Inequality; Positive operator; 15A18; 15A42; 47A63; 47B07; 47B15;
D O I
暂无
中图分类号
学科分类号
摘要
Audeh and Kittaneh have proved the following. Let X, Y and Z be compact operators on a complex separable Hilbert space such that XZZ∗Y≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{cc} X &{} Z \\ Z^{*} &{} Y \end{array} \right] \ge 0$$\end{document}. Then sj(Z)≤sj(X⊕Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} s_{j}(Z)\le s_{j}(X\oplus Y) \end{aligned}$$\end{document}for j=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,\ldots $$\end{document} In this paper, we provide a considerable generalization of this singular value inequality, which states that: Let X, Y and Z be compact operators on a complex separable Hilbert space such that XZZ∗Y≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left[ \begin{array}{cc} X &{} Z \\ Z^{*} &{} Y \end{array} \right] \ge 0$$\end{document} and let A, B be bounded linear operators on a complex separable Hilbert space. Then sj(AZB∗)≤maxA2,B2sj(X⊕Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} s_{j}(AZB^{*})\le \max \left\{ \left\| A\right\| ^{2},\left\| B\right\| ^{2}\right\} s_{j}(X\oplus Y) \end{aligned}$$\end{document}for j=1,2,…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,\ldots $$\end{document} Several generalizations for singular value inequalities of compact operators are also given.
引用
收藏
相关论文
共 11 条
  • [1] Audeh W(2020)Generalizations for singular value and arithmetic-geometric mean inequalities of operators J. Math. Anal. Appl. 489 1-8
  • [2] Audeh W(2020)Generalizations for singular value inequalities of operators Adv. Oper. Theory 5 371-381
  • [3] Audeh W(2012)Singular value inequalities for compact operators Linear Algebra Appl. 437 2516-2522
  • [4] Kittaneh F(1990)On the singular values of a product of operators SIAM J. Matrix Anal. Appl. 11 272-277
  • [5] Bhatia R(2008)The matrix arithmetic-geometric mean inequality revisited Linear Algebra Appl. 428 2177-2191
  • [6] Kittaneh F(2009)Commutator inequalities for Hilbert space operators Linear Algebra Appl. 431 1571-1578
  • [7] Bhatia R(2005)Inequalities for sums and products of operators Linear Algebra Appl. 407 32-42
  • [8] Kittaneh F(2006)More results on singular value inequalities of matrices Linear Algebra Appl. 416 724-729
  • [9] Hirzallah O(undefined)undefined undefined undefined undefined-undefined
  • [10] Hirzallah O(undefined)undefined undefined undefined undefined-undefined