A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals

被引:0
作者
Francesca Prinari
Elvira Zappale
机构
[1] Università di Ferrara,Dip. di Matematica e Informatica
[2] Università degli Studi di Salerno,Dip. di Ingegneria Industriale
来源
Journal of Optimization Theory and Applications | 2020年 / 186卷
关键词
Supremal functionals; Relaxation; Level convexity; -convergence; 49J45; 26B25; 47J22;
D O I
暂无
中图分类号
学科分类号
摘要
We provide relaxation for not lower semicontinuous supremal functionals defined on vectorial Lipschitz functions, where the Borel level convex density depends only on the gradient. The connection with indicator functionals is also enlightened, thus extending previous lower semicontinuity results in that framework. Finally, we discuss the power law approximation of supremal functionals, with nonnegative, coercive densities having explicit dependence also on the spatial variable, and satisfying minimal measurability assumptions.
引用
收藏
页码:412 / 452
页数:40
相关论文
共 62 条
[1]  
Abdullayev F(2014)A variational characterization of the effective yield set for ionic polycrystals Appl. Math. Optim. 69 487-503
[2]  
Bocea M(2017)Viscosity solutions of stationary Hamilton–Jacobi equations and minimizers of Proc. Am. Math. Soc. 145 5257-5265
[3]  
Mihăilescu M(2017) functionals Trans. Am. Math. Soc. 369 3289-3323
[4]  
Barron EN(2016)Duality for the NoDEA Nonlinear Differ. Equ. Appl. 23 11-21
[5]  
Bocea M(2004) optimal transport problem Math. Models Methods Appl. Sci. 14 1761-1784
[6]  
Ensen RR(2019)Existence of nonnegative viscosity solutions for a class of problems involving the Adv. Nonlinear Anal. 8 508-516
[7]  
Barron EN(2019)-Laplacian Numer. Methods Partial Differ. Equ. 35 155-180
[8]  
Bocea M(2018)Homogenization of C. R. Math. Acad. Sci. Paris 356 498-502
[9]  
Jensen RR(1995) functionals SIAM J. Control Optim. 33 1028-1039
[10]  
Bocea M(2002)Solutions of vectorial Hamilton–Jacobi equations are rank-one absolute minimisers in J. Convex. Anal. 9 225-236