Coulomb and Higgs branches from canonical singularities. Part 0

被引:0
作者
Cyril Closset
Sakura Schäfer-Nameki
Yi-Nan Wang
机构
[1] University of Oxford,Mathematical Institute
来源
Journal of High Energy Physics | / 2021卷
关键词
Field Theories in Higher Dimensions; Supersymmetric Gauge Theory; M-Theory; String Duality;
D O I
暂无
中图分类号
学科分类号
摘要
Five- and four-dimensional superconformal field theories with eight supercharges arise from canonical threefold singularities in M-theory and Type IIB string theory, respectively. We study their Coulomb and Higgs branches using crepant resolutions and deformations of the singularities. We propose a relation between the resulting moduli spaces, by compactifying the theories to 3d, followed by 3d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 mirror symmetry and an S-type gauging of an abelian flavor symmetry. In particular, we use this correspondence to determine the Higgs branch of some 5d SCFTs and their magnetic quivers from the geometry. As an application of the general framework, we observe that singularities that engineer Argyres-Douglas theories in Type IIB also give rise to rank-0 5d SCFTs in M-theory. We also compute the higher-form symmetries of the 4d and 5d SCFTs, including the one-form symmetries of generalized Argyres-Douglas theories of type (G, G′).
引用
收藏
相关论文
共 329 条
  • [1] Witten E(1996) = 2 Nucl. Phys. B 471 195-undefined
  • [2] Katz SH(1997) = 4 Nucl. Phys. B 497 173-undefined
  • [3] Klemm A(1996) SU(5) Nucl. Phys. B 477 746-undefined
  • [4] Vafa C(1996)6 Nucl. Phys. B 481 215-undefined
  • [5] Klemm A(1996) 5 Phys. Lett. B 388 753-undefined
  • [6] Lerche W(1997) 5 Nucl. Phys. B 483 229-undefined
  • [7] Mayr P(1997) 5 Nucl. Phys. B 497 56-undefined
  • [8] Vafa C(1997) 5 Nucl. Phys. B 504 147-undefined
  • [9] Warner NP(2013) 6 JHEP 10 046-undefined
  • [10] Bershadsky M(2014)5 JHEP 05 048-undefined