Graded Clifford Algebras and Graded Skew Clifford Algebras and Their Role in the Classification of Artin–Schelter Regular Algebras

被引:0
作者
Padmini Veerapen
机构
[1] Tennessee Technological University,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2017年 / 27卷
关键词
Clifford algebra; Quadratic form; Point module; Primary 16W50; Secondary 14A22;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a survey of work done on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-graded Clifford algebras (GCAs) and Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-graded skew Clifford algebras (GSCAs) by Vancliff et al. (Commun Algebra 26(4): 1193–1208, 1998), Stephenson and Vancliff (J Algebra 312(1): 86–110, 2007), Cassidy and Vancliff (J Lond Math Soc 81:91–112, 2010), Nafari et al. (J Algebra 346(1): 152–164, 2011), Vancliff and Veerapen (Contemp Math 592: 241–250, 2013), (J Algebra 420:54–64, 2014). In particular, we discuss the hypotheses necessary for these algebras to be Artin Schelter-regular (Adv Math 66:171–216, 1987), (The Grothendieck Festschrift. Birkhäuser, Boston, 1990) and show how certain ‘points’ called, point modules, can be associated to them. We may view an AS-regular algebra as a noncommutative analog of the polynomial ring. We begin our survey with a fundamental result in Vancliff et al. (Commun Algebra 26(4): 1193–1208, 1998) that is essential to subsequent results discussed here: the connection between point modules and rank-two quadrics. Using, in part, this connection the authors in Stephenson and Vancliff (J Algebra 312(1): 86–110, 2007) provide a method to construct GCAs with finitely many distinct isomorphism classes of point modules. In Cassidy and Vancliff (J Lond Math Soc 81:91–112, 2010), Cassidy and Vancliff introduce a quantized analog of a GCA, called a graded skew Clifford algebra and Nafari et al. (J Algebra 346(1): 152–164, 2011) show that most Artin Schelter-regular algebras of global dimension three are either twists of graded skew Clifford algebras of global dimension three or Ore extensions of graded Clifford algebras of global dimension two. Vancliff and Veerapen (Contemp Math 592: 241–250, 2013), (J Algebra 420:54–64, 2014) go a step further and generalize the result of Vancliff et al. (Commun Algebra 26(4): 1193–1208, 1998), between point modules and rank-two quadrics, by showing that point modules over GSCAs are determined by (noncommutative) quadrics of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-rank at most two.
引用
收藏
页码:2855 / 2871
页数:16
相关论文
共 29 条
  • [1] Artin M(1987)Graded algebras of global dimension 3 Adv. Math. 66 171-216
  • [2] Schelter WF(1991)Modules over regular algebras of dimension 3 Invent. Math. 106 335-388
  • [3] Artin M(1985)Zero divisors in enveloping algebras of graded lie algebras J. Pure Appl. Algebra 38 159-166
  • [4] Tate J(2016)Generalized Clifford theory for graded spaces J. Pure Appl. Algebra 220 647-665
  • [5] Van den Bergh M(2015)The one-dimensional line scheme of a certain family of quantum J. Algebra 439 316-333
  • [6] Aubry M(1995)s J. Algebra 177 142-153
  • [7] Lemaire J-M(1992)Central singularities of quantum spaces Glasg. Math. J. 34 277-300
  • [8] Chen Z(2015)Some properties of non-commutative regular graded rings Commun. Algebra 43 719-725
  • [9] Kang Y(2011)Graded Skew Clifford algebras that are twists of graded Clifford algebras J. Algebra 346 152-164
  • [10] Chandler R(2001)Classifying quadratic quantum J. Algebra 241 789-798