Damping solitary wave under the second and third boundary condition of a viscous plasma

被引:0
作者
G Li
Y-Q Ren
机构
[1] University of Electronic Science and Technology of China,School of Aeronautics and Astronautics
来源
Indian Journal of Physics | 2017年 / 91卷
关键词
Viscosity plasma; Damping solitary wave; Nonlinear phenomena; KdV-type equation; 52.27.Lw; 52.25.Dg; 52.35.Sb;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the solitary waves of a viscous plasma confined in a cylindrical pipe is investigated under two types of boundary condition. By using the reductive perturbation theory, a quasi-KdV equation is derived and a damping solitary wave is obtained. It is found that the damping rate increases with the viscosity coefficient of the plasma ν′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu '$$\end{document} increasing and the radius of the cylindrical pipe R decreasing for second and third boundary condition. The magnitude of the damping rate is also dominated by boundary condition type. From the fact that the amplitude reduces rapidly when R approaches zero or ν′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu '$$\end{document} approaches infinite, we confirm the existence of a damping solitary wave.
引用
收藏
页码:219 / 223
页数:4
相关论文
empty
未找到相关数据