Periodic contrast structures in systems of the reaction-diffusion-advection type

被引:0
|
作者
N. N. Nefedov
M. A. Davydova
机构
[1] Moscow State University,
来源
Differential Equations | 2010年 / 46卷
关键词
Phase Plane; Transition Curve; Zero Approximation; Exponential Estimate; Adjoint System;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider a nonlinear parabolic problem for an equation that is referred in applications to as the reaction-diffusion-advection equation and whose solutions have internal transition layers (contrast structures). For such equations, we construct the asymptotics of arbitrary-order accuracy and prove the existence and the Lyapunov stability.
引用
收藏
页码:1309 / 1321
页数:12
相关论文
共 50 条
  • [31] On The Existence and Asymptotic Stability of Periodic Contrast Structures in Quasilinear Reaction-Advection-Diffusion Equations
    N. N. Nefedov
    E. I. Nikulin
    L. Recke
    Russian Journal of Mathematical Physics, 2019, 26 : 55 - 69
  • [32] Existence and stability of periodic contrast structures in the reaction–advection–diffusion problem in the case of a balanced nonlinearity
    N. N. Nefedov
    E. I. Nikulin
    Differential Equations, 2017, 53 : 516 - 529
  • [33] Error propagation in approximations to reaction-diffusion-advection equations
    Yannacopoulos, A.N.
    Tomlin, A.S.
    Brindley, J.
    Merkin, J.H.
    Pilling, M.J.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 223 (1-2): : 82 - 90
  • [34] FRONT PROPAGATION IN BISTABLE REACTION-DIFFUSION-ADVECTION EQUATIONS
    Malaguti, Luisa
    Marcelli, Cristina
    Matucci, Serena
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2004, 9 (9-10) : 1143 - 1166
  • [35] NERTIAL MANIFOLDS FOR 1D REACTION-DIFFUSION-ADVECTION SYSTEMS. PART II: PERIODIC BOUNDARY CONDITIONS
    Kostianko, Anna
    Zelik, Sergey
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (01) : 285 - 317
  • [36] Pushed fronts of monostable reaction-diffusion-advection equations
    Guo, Hongjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 356 : 127 - 162
  • [37] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [38] CONCENTRATION PHENOMENON OF THE ENDEMIC EQUILIBRIUM OF A REACTION-DIFFUSION-ADVECTION
    Lei, Chengxia
    Zhou, Xinhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (06): : 3077 - 3100
  • [39] Evolution of conditional dispersal: a reaction-diffusion-advection model
    Chen, Xinfu
    Hambrock, Richard
    Lou, Yuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) : 361 - 386
  • [40] On One Model Problem for the Reaction-Diffusion-Advection Equation
    Davydova, M. A.
    Zakharova, S. A.
    Levashova, N. T.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (09) : 1528 - 1539