Effect of irradiation with pulsed fluxes of high-temperature deuterium plasma and fast ions on the structure of the surface layer of W-1% La2O3 alloy

被引:0
作者
Demina E.V. [1 ]
Gribkov V.A. [1 ,2 ]
Pimenov V.N. [1 ]
Maslyaev S.A. [1 ]
Prusakova M.D. [1 ]
Shirokova V. [3 ]
Laas T. [3 ]
Ugaste Y. [3 ]
机构
[1] Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow
[2] Institute of Plasma Physics and Laser Microfusion, Warsaw
[3] Tallinn University, Tallinn
来源
Demina, E.V. (elenadyom@mail.ru) | 1600年 / Maik Nauka Publishing / Springer SBM卷 / 05期
关键词
deuterium plasma; divertor; fusion reactor; irradiation; La-W-O oxides; surface structure; tungsten alloys;
D O I
10.1134/S2075113314030058
中图分类号
学科分类号
摘要
Scanning electron microscopy, X-ray electron probe analysis, and X-ray phase analysis are used to investigate the surface structure of W-1% La2O3 alloy after irradiation with submicrosecond pulses of deuterium ions and high-temperature deuterium plasma in a Plasma Focus installation for simulation of a plasma disruption in the ITER tokamak. It is established that melting of the tungsten surface and formation of micro-cracks take place under irradiation with a power flux density up to 1012 W/cm2. Introduction of La2O3 particles in the alloy leads to the formation of complex La-W-O oxides with lower melting points, which results in the formation of a nonuniform structure affecting the high-temperature response of the material. © 2014, Pleiades Publishing, Ltd.
引用
收藏
页码:211 / 218
页数:7
相关论文
共 31 条
[1]  
Bolt H., Barabash V., Krauss W., Linke J., Neu R., Suzuki S., Yoshida N., Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater., 329-333, pp. 66-73, (2004)
[2]  
Linke J., High heat performance of plasma facing materials and components under service conditions in fusion reactors, Fusion Sci. Technol., 49, pp. 455-464, (2006)
[3]  
Rieth M., Armstrong D., Daffener B., Et al., Tungsten as structural divertor material, Materials Challenges for Future Nuclear Fission and Fusion Technologies, 73, pp. 11-21, (2011)
[4]  
Robinson A., El-Guebaly L., Henderson D., W-based alloys for advanced devertor designs: Detailed activation and radiation damage analyses, (2010)
[5]  
Savitskii E.M., Burkhanov G.S., Metallovedenie splavov tugoplavkikh i redkikh metallov, (1971)
[6]  
Zelikman A.N., Nikitina L.S., Vol’fram, (1978)
[7]  
Savitskii E.M., Povarova K.B., Makarov P.V., Metallovedenie vol’frama, (1978)
[8]  
Alymov M.I., Poroshkovaya metallurgiya nanokristallicheskikh materialov, (1985)
[9]  
Libenson G.A., Lopatin V.Y., Komarnitskii G.V., Protsessy poroshkovoi metallurgii, (2001)
[10]  
Ishijima Y., Kurishita H., Yubuta K., Arakawa H., Current status of ductile tungsten alloy development by mechanical alloying, J. Nucl. Mater., 329-333, pp. 775-779, (2004)