Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex Euclidean space

被引:0
作者
Mirjana Djorić
Masafumi Okumura
机构
[1] University of Belgrade,Faculty of Mathematics
[2] 5-25-25,undefined
[3] Minami Ikuta,undefined
[4] Tama-ku,undefined
来源
Annals of Global Analysis and Geometry | 2006年 / 30卷
关键词
CR submanifold; complex Euclidean space; second fundamental form; almost contact metric structure;
D O I
暂无
中图分类号
学科分类号
摘要
We treat m-dimensional real submanifolds M of complex space forms ̿M when the maximal holomorphic tangent subspace is (m−1)-dimensional. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space and in this paper we study the condition h(FX,Y)−h(X,FY) = g(FX,Y)η, η∊ T⊥(M), on the structure F and on the second fundamental form h of these submanifolds. Especially when the ambient space ̿M is a complex Euclidean space, we obtain a complete classification of submanifolds M which satisfy these conditions.
引用
收藏
页码:383 / 396
页数:13
相关论文
共 25 条
[1]  
Bejancu A.(1978)CR-submanifolds of a Kähler manifold I Proc. Amer. Math. Soc. 69 135-142
[2]  
Cecil T.E.(1982)Focal sets and real hypersurfaces in complex projective space Trans. Amer. Math. Soc. 269 481-499
[3]  
Ryan P.J.(1999)On contact submanifolds in complex projective space Math. Nachr. 202 17-28
[4]  
Djorić M.(1998)CR submanifolds of maximal CR dimension of complex projective space Arch. Math. 71 148-158
[5]  
Okumura M.(2002)CR submanifolds of maximal CR dimension in complex manifolds PDE's, Submanifolds and Affine Differential Geometry, Banach center publications, Institute of Mathematics, Polish Academy of Sciences, Warsaw 2002. 57 89-99
[6]  
Djorić M.(1971)Reduction of the codimension of an isometric immersion J. Differential Geom 5 333-340
[7]  
Okumura M.(1979)Pseudo-Einstein real hypersurfaces in complex space forms J. Differential Geom. 14 339-354
[8]  
Djorić M.(1986)On some real hypersurfaces of a complex hyperbolic space Geom. Dedicata 20 245-261
[9]  
Okumura M.(1965)Approximation theorems on differentiable submanifolds of a complex manifold Trans. Amer. Math. Soc. 142 15-35
[10]  
Erbacher J.(1983)Contact metric hypersurfaces in complex spaces Demonstratio Math 16 95-102