Hyperelliptic curves and values of Gaussian hypergeometric series

被引:0
作者
Rupam Barman
Gautam Kalita
Neelam Saikia
机构
[1] Indian Institute of Technology,Department of Mathematics
[2] Darrang College,Department of Mathematics
来源
Archiv der Mathematik | 2014年 / 102卷
关键词
11G20; 33C20; Elliptic curves; Hyperelliptic curves; Gaussian hypergeometric series; Trace of Frobenius;
D O I
暂无
中图分类号
学科分类号
摘要
We express the number of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document} -points on the hyperelliptic curve αy2=βxf+γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha{y}^2=\beta{x}^f + \gamma}$$\end{document} in terms of Gaussian hypergeometric series. We also find some special values of 2F1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{_{2}}F_1}$$\end{document} -Gaussian hypergeometric series containing characters of order 3 and 4 as parameters.
引用
收藏
页码:345 / 355
页数:10
相关论文
共 18 条
  • [1] Anuradha N.(2008)Number of points on certain hyperelliptic curves defined over finite fields Finite Fields and Their Applications 14 314-328
  • [2] Barman R.(2012)Hypergeometric functions and a family of algebraic curves Ramanujan J. 28 175-185
  • [3] Kalita G.(2012)Certain values of Gaussian hypergeometric series and a family of algebraic curves Int. J. Number Theory 8 945-961
  • [4] Barman R.(2013)Hypergeometric functions over Proc. Amer. Math. Soc. 141 3403-3410
  • [5] Kalita G.(2013) and traces of Frobenius for elliptic curves J. Number Theory 133 3099-3111
  • [6] Barman R.(2013)Elliptic curves and special values of Gaussian hypergeometric series Int. J. Number Theory 9 1753-1763
  • [7] Kalita G.(2010)On the polynomial Proc. Amer. Math. Soc. 138 109-123
  • [8] Barman R.(1987) over Trans. Amer. Math. Soc. 301 77-101
  • [9] Kalita G.(1992) and Gaussian hypergeometric series Hiroshima Math. J. 22 461-467
  • [10] Barman R.(2011)Hypergeometric functions over Proc. Amer. Math. Soc. 139 1931-1938