GI-graphs: a new class of graphs with many symmetries

被引:0
作者
Marston D. E. Conder
Tomaž Pisanski
Arjana Žitnik
机构
[1] University of Auckland,Department of Mathematics
[2] University of Ljubljana,Faculty of Mathematics and Physics
来源
Journal of Algebraic Combinatorics | 2014年 / 40卷
关键词
-graph; Generalized Petersen graph; Vertex-transitive graph; Edge-transitive graph; Circulant graph; Automorphism group; Wreath product; Unit-distance graph;
D O I
暂无
中图分类号
学科分类号
摘要
The class of generalized Petersen graphs was introduced by Coxeter in the 1950s. Frucht, Graver and Watkins determined the automorphism groups of generalized Petersen graphs in 1971, and much later, Nedela and Škoviera and (independently) Lovrečič-Saražin characterised those which are Cayley graphs. In this paper we extend the class of generalized Petersen graphs to a class of GI-graphs. For any positive integer n and any sequence j0,j1,…,jt−1 of integers mod n, the GI-graph GI(n;j0,j1,…,jt−1) is a (t+1)-valent graph on the vertex set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}_{t} \times\mathbb{Z}_{n}$\end{document}, with edges of two kinds: an edge from (s,v) to (s′,v), for all distinct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s,s' \in \mathbb{Z}_{t}$\end{document} and all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v \in\mathbb{Z}_{n}$\end{document},edges from (s,v) to (s,v+js) and (s,v−js), for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s \in\mathbb{Z}_{t}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v \in\mathbb{Z}_{n}$\end{document}. By classifying different kinds of automorphisms, we describe the automorphism group of each GI-graph, and determine which GI-graphs are vertex-transitive and which are Cayley graphs. A GI-graph can be edge-transitive only when t≤3, or equivalently, for valence at most 4. We present a unit-distance drawing of a remarkable GI(7;1,2,3).
引用
收藏
页码:209 / 231
页数:22
相关论文
共 35 条
  • [1] Boben M.(2005)I-graphs and the corresponding configurations J. Comb. Des. 13 406-424
  • [2] Pisanski T.(1997)The magma algebra system I: The user language J. Symb. Comput. 24 235-265
  • [3] Žitnik A.(1950)Self-dual configurations and regular graphs Bull. Am. Math. Soc. 56 413-455
  • [4] Bosma W.(1949)On the groups of repeated graphs Bull. Am. Math. Soc. 55 418-420
  • [5] Cannon J.(1971)The groups of the generalized Petersen graphs Proc. Camb. Philol. Soc. 70 211-218
  • [6] Playoust C.(1990)The real configuration (21 J. Lond. Math. Soc. 41 336-346
  • [7] Coxeter H.S.M.(2010)) Discrete Math. 310 1783-1792
  • [8] Frucht R.(2012)Products of unit distance graphs J. Korean Math. Soc. 49 475-491
  • [9] Frucht R.(2012)All generalized Petersen graphs are unit-distance graphs Graphs Comb. 28 823-830
  • [10] Graver J.E.(2008)Isomorphism checking of Eur. J. Comb. 29 1116-1122