The Riemann-Roch theorem on surfaces with log-terminal singularities

被引:0
作者
Prokhorov Yu.G. [1 ]
Verëvkin A.B. [2 ]
机构
[1] Department of Algebra, Faculty of Mathematics, Moscow State Lomonosov University
[2] Department of Algebraic and Geometric Computations, Faculty of Mathematics, Ulyanovsk State University
关键词
Singular Point; Pezzo Surface; Cartier Divisor; Picard Number; Canonical Singularity;
D O I
10.1007/s10958-007-0417-6
中图分类号
学科分类号
摘要
Using the singular Riemann-Roch theorem, we propose a method to construct anticanonical sections on singular del Pezzo surfaces. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:200 / 205
页数:5
相关论文
共 12 条
[1]  
Alexeev V., Boundedness and K<sup>2</sup> for log surfaces, Internat. J. Math., 5, 6, pp. 779-810, (1994)
[2]  
Alexeev V.A., Nikulin V.V., Classification of log del Pezzo surfaces of index ≤ 2, Doklady Po Matematike I Ee Prilozheniyam, 2, 2, pp. 51-150, (1988)
[3]  
Blache R., The structure of l.c. surfaces of Kodaira dimension zero. I, J. Algebraic Geom., 4, 1, pp. 137-179, (1995)
[4]  
Keel S., McKernan J., Rational Curves on Quasi-Projective Surfaces, 140, (1999)
[5]  
Kojima H., Logarithmic del Pezzo surfaces of rank one with unique singular points, Japan. J. Math. (N.S.), 25, 2, pp. 343-375, (1999)
[6]  
Miyanishi M., Tsunoda S., Logarithmic del Pezzo surfaces of rank one with contractible boundaries at infinity, Japan. J. Math., 10, pp. 271-319, (1984)
[7]  
Nikulin V.V., Del Pezzo surfaces with log-terminal singularities. III, Math. USSR-Izv., 35, 3, pp. 657-675, (1990)
[8]  
Prokhorov Y.G., Lectures on Complements on Surfaces, 10, (2001)
[9]  
Prokhorov Y.G., Shokurov V.V., The first main theorem on complements: From global to local, Izv. Ross. Akad. Nauk, Ser. Mat., 65, 6, pp. 1169-1196, (2001)
[10]  
Reid M., Young person's guide to canonical singularities, Proc. Symp. Pure Math., 46, pp. 343-416, (1987)