Exact Algorithms for L(2,1)-Labeling of Graphs

被引:0
|
作者
Frédéric Havet
Martin Klazar
Jan Kratochvíl
Dieter Kratsch
Mathieu Liedloff
机构
[1] INRIA Sophia-Antipolis,Projet Mascotte I3S (CNRS & UNSA) and INRIA
[2] Charles University,Department of Applied Mathematics and Institute for Theoretical Computer Science
[3] Université Paul Verlaine–Metz,Laboratoire d’Informatique Théorique et Appliquée
[4] Université d’Orléans,Laboratoire d’Informatique Fondamentale d’Orléans
来源
Algorithmica | 2011年 / 59卷
关键词
Graph; Algorithm; Moderately exponential time algorithm; (2,1)-labeling;
D O I
暂无
中图分类号
学科分类号
摘要
The notion of distance constrained graph labelings, motivated by the Frequency Assignment Problem, reads as follows: A mapping from the vertex set of a graph G=(V,E) into an interval of integers {0,…,k} is an L(2,1)-labeling of G of span k if any two adjacent vertices are mapped onto integers that are at least 2 apart, and every two vertices with a common neighbor are mapped onto distinct integers. It is known that for any fixed k≥4, deciding the existence of such a labeling is an NP-complete problem. We present exact exponential time algorithms that are faster than the naive O*((k+1)n) algorithm that would try all possible mappings. The improvement is best seen in the first NP-complete case of k=4, where the running time of our algorithm is O(1.3006n). Furthermore we show that dynamic programming can be used to establish an O(3.8730n) algorithm to compute an optimal L(2,1)-labeling.
引用
收藏
页码:169 / 194
页数:25
相关论文
共 50 条
  • [41] On distance-regular graphs on the set of nontrivial p-elements of the group L-2(p(n))
    Mukhamet'yanov, I. T.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 164 - 178
  • [42] Oriented total variation l1/2 regularization
    Jiang, Wenfei
    Cui, Hengbin
    Zhang, Fan
    Rong, Yaocheng
    Chen, Zhibo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 29 : 125 - 137
  • [43] An L1-and-L2-Norm-Oriented Latent Factor Model for Recommender Systems
    Wu, Di
    Shang, Mingsheng
    Luo, Xin
    Wang, Zidong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5775 - 5788
  • [44] Accelerating l1 l2 deblurring using wavelet expansions of operators
    Escande, Paul
    Weiss, Pierre
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 343 : 373 - 396
  • [45] AN ADAPTIVE L1-L2 HYBRID ERROR MODEL TO SUPER-RESOLUTION
    Song, Huihui
    Zhang, Lei
    Wang, Peikang
    Zhang, Kaihua
    Li, Xin
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2821 - 2824
  • [46] A Ratio Model of L1/L2 Norm for Sound Source Identification
    Huang, Linsen
    Xu, Zhongming
    Zhang, Zhifei
    He, Yansong
    SENSORS, 2020, 20 (18) : 1 - 17
  • [47] Resistance Distance in H-Join of Graphs G1, G2, ... , Gk
    Zhang, Li
    Zhao, Jing
    Liu, Jia-Bao
    Arockiaraj, Micheal
    MATHEMATICS, 2018, 6 (12):
  • [48] On the implementation of ADMM with dynamically configurable parameter for the separable l1/l2 minimization
    Wang, Jun
    Ma, Qiang
    OPTIMIZATION LETTERS, 2025, 19 (01) : 85 - 102
  • [49] Mixed Noise Removal for Hyperspectral Image With l0-l1-2SSTV Regularization
    Zhang, Li
    Qian, Yan
    Han, Jingmin
    Duan, Puhong
    Ghamisi, Pedram
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5371 - 5387
  • [50] AN ADAPTIVE l1-l2-TYPE MODEL WITH HIERARCHIES FOR SPARSE SIGNAL RECONSTRUCTION PROBLEM
    Ding, Yanyun
    Yue, Zhixiao
    Zhang, Haibin
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (04): : 695 - 712