Riesz Transform Characterizations for Multidimensional Hardy Spaces

被引:0
作者
Edyta Kania-Strojec
Marcin Preisner
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Hardy space; Riesz transform; Bessel operator; Laguerre operator; Dirichlet Laplacian; Primary 42B30; Secondary 42B20; 42B25; 33C45;
D O I
暂无
中图分类号
学科分类号
摘要
We study Hardy space HL1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L(X)$$\end{document} related to a self-adjoint operator L defined on an Euclidean subspace X of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}^d}$$\end{document}. We continue study from [27], where, under certain assumptions on the heat semigroup exp(-tL)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-tL)$$\end{document}, the atomic characterization of local type for HL1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L(X)$$\end{document} was proved. In this paper we provide additional assumptions that lead to another characterization of HL1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L(X)$$\end{document} by the Riesz transforms related to L. As an application, we prove the Riesz transform characterization of HL1(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1_L(X)$$\end{document} for multidimensional Bessel and Laguerre operators, and the Dirichlet Laplacian on R+d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d_+$$\end{document}.
引用
收藏
相关论文
共 76 条
  • [1] Auscher P(2003)Hardy spaces and divergence operators on strongly Lipschitz domains of J. Funct. Anal. 201 148-184
  • [2] Russ E(2008)New abstract Hardy spaces J. Funct. Anal. 255 1761-1796
  • [3] Bernicot F(2010)Riesz transform characterization of Hardy spaces associated with certain Laguerre expansions Tohoku Math. J. 62 215-231
  • [4] Zhao J(2008)Transference between Laguerre and Hermite settings J. Funct. Anal. 254 826-850
  • [5] Betancor J(2012)Calderón–Zygmund operators in the Bessel setting Monatsh. Math. 167 375-403
  • [6] Dziubański J(2009)On Hardy spaces associated with Bessel operators J. Anal. Math. 107 195-219
  • [7] Garrigós G(2007)Riesz transforms related to Bessel operators Proc. R. Soc. Edinb. Sect. A 137 701-725
  • [8] Betancor J(2010)Mapping properties of fundamental operators in harmonic analysis related to Bessel operators Studia Math. 197 101-140
  • [9] Fariña JC(2011)Area Littlewood–Paley functions associated with Hermite and Laguerre operators Potential Anal. 34 345-369
  • [10] Rodríguez-Mesa L(2001)Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform Tohoku Math. J. 53 109-129