Formations of orthodox semigroups

被引:0
作者
Gracinda M. S. Gomes
Ana-Catarina C. Monteiro
机构
[1] Universidade de Lisboa,Departamento de Matemática, Faculdade de Ciências
来源
Semigroup Forum | 2023年 / 107卷
关键词
Orthodox semigroup; Idempotent separating quotient; Bivariety; Formation;
D O I
暂无
中图分类号
学科分类号
摘要
Taking formations of groups and of inverse semigroups as the starting point, formations of orthodox semigroups are defined, as well as the wider class of i-formations (i standing for idempotent-separating). The relation between the nature of a class of inverse semigroups F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document} [of groups G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}$$\end{document}] and that of certain classes of orthodox semigroups with associated inverse semigroups in F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document} [groups in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {G}$$\end{document}] is discussed. The product of formations of orthodox semigroups, in particular of R-unipotent semigroups, is considered, and a product like the Gaschütz product known for groups is presented for i-formations. The paper concludes with a list of questions.
引用
收藏
页码:651 / 679
页数:28
相关论文
共 27 条
[1]  
Ballester-Bolinches A(2014)Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited Forum Math. 26 1737-1761
[2]  
Pin J-E(1962)Zur Theorie der endlichen auflösbaren Gruppen Math. Z. 80 300-305
[3]  
Soler-Escrivà X(1993)A characterization of the group congruences on a semigroup Semigroup Forum 46 48-53
[4]  
Gaschütz W(1998)Orthodox congruences on regular semigroups Semigroup Forum 37 149-166
[5]  
Gomes GMS(2022)Formations of inverse semigroups Semigroup Forum 105 1-27
[6]  
Gomes GMS(2022)The lattice of varieties of monoids Jpn. J. Math. 17 117-183
[7]  
Gomes GMS(1972)Congruences and Green’s relations on regular semigroups Glasgow Math. J. 13 167-175
[8]  
Nobre IJ(1989)Identities for existence varieties of regular semigroups Bull. Austral. Math. Soc. 40 59-77
[9]  
Gusev SV(1977)A basis theorem for free inverse semigroups J. Algebra 49 172-190
[10]  
Lee EWH(1991)Joins of inverse semigroup varieties and band varieties Int. J. Algebra Comput. 1 371-386