On generating Sobolev orthogonal polynomials

被引:2
作者
Van Buggenhout, Niel [1 ]
机构
[1] Charles Univ Prague, Dept Numer Math, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
NUMERICALLY STABLE RECONSTRUCTION; MATRIX; VANDERMONDE; ITERATIONS; SERIES; ROOTS;
D O I
10.1007/s00211-023-01379-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem.
引用
收藏
页码:415 / 443
页数:29
相关论文
共 59 条
[1]  
Althammer P., 1962, J REINE ANGEW MATH, V211, P192, DOI [10.1515/crll.1962.211.192, DOI 10.1515/CRLL.1962.211.192]
[2]  
Ammar G., 1991, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms. Proceedings of the NATO Advanced Study Institute, P385
[4]   Multiple recursion conjugate gradient algorithms part I: Sufficient conditions [J].
Barth, T ;
Manteuffel, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (03) :768-796
[5]   POLYNOMIAL INTERPOLATION RESULTS IN SOBOLEV SPACES [J].
BERNARDI, C ;
MADAY, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :53-80
[6]  
BOOR CD, 1978, LINEAR ALGEBRA APPL, V21, P245, DOI 10.1016/0024-3795(78)90086-1
[7]   Vandermonde with Arnoldi [J].
Brubeck, Pablo D. ;
Nakatsukasa, Yuji ;
Trefethen, Lloyd N. .
SIAM REVIEW, 2021, 63 (02) :405-415
[8]   THE CHARACTERIZATION OF THE QUASI-TYPICAL EXTENSION OF AN INNER PRODUCT [J].
CACHAFEIRO, A ;
MARCELLAN, F .
JOURNAL OF APPROXIMATION THEORY, 1990, 62 (02) :235-242
[9]  
Chu MT, 2002, ACT NUMERIC, V11, P1, DOI 10.1017/S0962492902000014
[10]   Roots of polynomials expressed in terms of orthogonal polynomials [J].
Day, D ;
Romero, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1969-1987