Irregularity of Distribution in Wasserstein Distance

被引:0
作者
Cole Graham
机构
[1] Stanford University,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2020年 / 26卷
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance; 11K38; 11K06; 42A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-adapted Erdős–Turán inequality, and use it to extend a well-known bound of Pólya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
相关论文
共 43 条
[41]  
Zinterhof P(undefined)undefined undefined undefined undefined-undefined
[42]  
Zinterhof P(undefined)undefined undefined undefined undefined-undefined
[43]  
Stegbuchner H(undefined)undefined undefined undefined undefined-undefined