Irregularity of Distribution in Wasserstein Distance

被引:0
作者
Cole Graham
机构
[1] Stanford University,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2020年 / 26卷
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance; 11K38; 11K06; 42A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-adapted Erdős–Turán inequality, and use it to extend a well-known bound of Pólya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
相关论文
共 43 条
[1]  
Benamou JD(2000)A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem Numer. Math. 84 375-393
[2]  
Brenier Y(2011)On Roth’s orthogonal function method in discrepancy theory Unif. Distrib. Theory 6 143-184
[3]  
Bilyk D(1980)On irregularities of distribution Mathematika 27 153-170
[4]  
Chen WWL(1956)Note on irregularities of distribution Mathematika 3 131-135
[5]  
Davenport H(2010)Fast transport optimization for Monge costs on the circle SIAM J. Appl. Math. 70 2239-2258
[6]  
Delon J(1948)On a problem in the theory of uniform distribution I Nederl. Akad. Wetensch. Proc. 51 1146-1154
[7]  
Salomon J(1948)On a problem in the theory of uniform distribution II Nederl. Akad. Wetensch. Proc. 51 1262-1269
[8]  
Sobolevski A(1957)Some applications of a lemma on Fourier series Publ. Inst. Math. 11 9-18
[9]  
Erdős P(1984)A class of Wasserstein metrics for probability distributions Michigan Math. J. 31 231-240
[10]  
Turán P(2003)The distribution of values of Geom. Funct. Anal. 13 992-1028