QUANTUM SUPERGROUPS I. FOUNDATIONS

被引:0
作者
Clark S. [1 ]
Hill D. [1 ]
Wang W. [1 ]
机构
[1] Department of Mathematics, University of Virginia, Charlottesville, VA
关键词
Quantum Group; Braid Group; Verma Module; Integrable Module; Character Formula;
D O I
10.1007/s00031-013-9247-4
中图分类号
学科分类号
摘要
In this part one of a series of papers, we introduce a new version of quantum covering and super groups with no isotropic odd simple root, which is suitable for the study of integrable modules, integral forms, and the bar involution. A quantum covering group involves parameters q and π with π2 = 1, and it specializes at π = -1 to a quantum supergroup. Following Lusztig, we formulate and establish various structural results of the quantum covering groups, including a bilinear form, quasi-R-matrix, Casimir element, character formulas for integrable modules, and higher Serre relations. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:1019 / 1053
页数:34
相关论文
共 18 条
  • [1] Benkart G., Kang S.-J., Melville D., Quantized enveloping algebras for Borcherds superalgebras, Trans. AMS., 350, pp. 3297-3319, (1998)
  • [2] Clark S., Hill D., Wang W., Quantum supergroups II. Canonical basis
  • [3] Clark S., Wang W., Canonical basis for quantum osp(1{pipe}2), Lett. Math. Phys., 103, pp. 207-231, (2013)
  • [4] Drinfeld V., Quantum groups, Proceedings of the ICM, pp. 798-820, (1986)
  • [5] Ellis A., Khovanov M., Lauda A., The odd nilHecke algebra and its diagrammatics, (2013)
  • [6] Geer N., Etingof-Kazhdan quantization of Lie superbialgebras, Adv. Math., 207, pp. 1-38, (2006)
  • [7] Hill D., Wang W., Categorification of quantum Kac-Moody superalgebras, Trans. Amer. Math. Soc.
  • [8] Jantzen J.C., Lectures on Quantum Groups, Graduate Studies in Mathematics, 6, (1996)
  • [9] Jimbo M., A q-analogue of U(gl(N+1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11, pp. 247-252, (1986)
  • [10] Kac V., Infinite-dimensional algebras, Dedekind's η-function, classical Möbius function and the very strange formula, Adv. Math., 30, pp. 85-136, (1978)