Structure-preserving interpolation of bilinear control systems

被引:0
|
作者
Peter Benner
Serkan Gugercin
Steffen W. R. Werner
机构
[1] Max Planck Institute for Dynamics of Complex Technical Systems,Faculty of Mathematics
[2] Otto von Guericke University,Department of Mathematics and Computational Modeling and Data Analytics Division, Academy of Integrated Science
[3] Virginia Tech,undefined
来源
Advances in Computational Mathematics | 2021年 / 47卷
关键词
Model reduction; Bilinear systems; Structure-preserving approximation; Structured interpolation; 30E05; 34K17; 65D05; 93C10; 93A15; 93C35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extendthe structure-preserving interpolatory model reduction framework, originally developed for linear systems, to structured bilinear control systems. Specifically, we give explicit construction formulae for the model reduction bases to satisfy different types of interpolation conditions. First, we establish the analysis for transfer function interpolation for single-input single-output structured bilinear systems. Then, we extend these results to the case of multi-input multi-output structured bilinear systems by matrix interpolation. The effectiveness of our structure-preserving approach is illustrated by means of various numerical examples.
引用
收藏
相关论文
共 50 条
  • [1] Structure-preserving interpolation of bilinear control systems
    Benner, Peter
    Gugercin, Serkan
    Werner, Steffen W. R.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)
  • [2] Structure-preserving interpolation for model reduction of parametric bilinear systems
    Benner, Peter
    Gugercin, Serkan
    Werner, Steffen W.R.
    Automatica, 2021, 132
  • [3] Structure-preserving interpolation for model reduction of parametric bilinear systems
    Benner, Peter
    Gugercin, Serkan
    Werner, Steffen W. R.
    AUTOMATICA, 2021, 132
  • [4] Structure-preserving stabilization of Hamiltonian control systems
    Abeber, H.
    Katzschmann, M.
    Systems and Control Letters, 1994, 22 (04): : 281 - 285
  • [5] Interpolation Theory for Structure-preserving Model Reduction
    Beattie, Christopher A.
    Gugercin, Serkan
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4204 - 4208
  • [6] Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups
    Abe, Masayuki
    Groth, Jens
    Haralambiev, Kristiyan
    Ohkubo, Miyako
    ADVANCES IN CRYPTOLOGY - CRYPTO 2011, 2011, 6841 : 649 - 666
  • [7] STRUCTURE-PRESERVING STABILIZATION OF HAMILTONIAN CONTROL-SYSTEMS
    ABESSER, H
    KATZSCHMANN, M
    SYSTEMS & CONTROL LETTERS, 1994, 22 (04) : 281 - 285
  • [8] Structure-preserving local optimal control of mechanical systems
    Flasskamp, Kathrin
    Murphey, Todd D.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (02): : 310 - 329
  • [9] Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems
    Gugercin, Serkan
    Polyuga, Rostyslav V.
    Beattie, Christopher
    van der Schaft, Arjan
    AUTOMATICA, 2012, 48 (09) : 1963 - 1974
  • [10] Structure-preserving H?, control for port-Hamiltonian systems
    Breiten, Tobias
    Karsai, Attila
    SYSTEMS & CONTROL LETTERS, 2023, 174