Online packing of d-dimensional boxes into the unit cube

被引:0
作者
Janusz Januszewski
Łukasz Zielonka
机构
[1] UTP University of Science and Technology,Institute of Mathematics and Physics
来源
Periodica Mathematica Hungarica | 2020年 / 81卷
关键词
Packing; Online packing; Cube; Box; 52C17;
D O I
暂无
中图分类号
学科分类号
摘要
Any sequence of d-dimensional boxes of edge length smaller than or equal to 1 with total volume not greater than (3-22)·3-d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3-2\sqrt{2})\cdot 3^{-d}$$\end{document} can be packed online into the d-dimensional unit cube.
引用
收藏
页码:98 / 114
页数:16
相关论文
共 19 条
  • [1] Grzegorek P(2018)Drawer algorithms for 1-space bounded multidimensional hyperbox packing J. Comb. Optim. 37 1-34
  • [2] Januszewski J(2008)Online removable square packing Theory Comput. Syst. 43 38-55
  • [3] Han X(1996)On-line q-adic covering by the method of the n-th segment and its application to on-line covering by cubes Beiträge Algebra Geom. 37 51-56
  • [4] Iwama K(1997)On-line packing sequences of cubes in the unit cube Geom. Dedicata 67 285-293
  • [5] Zhang G(2000)Packing rectangles into the unit square Geom. Dedicata 8 13-18
  • [6] Januszewski J(2018)Efficient online packing of 4-dimensional cubes into the unit cube Stud. Sci. Math. Hung. 55 305-326
  • [7] Lassak M(1997)On-line potato-sack algorithm efficient for packing into small boxes Period. Math. Hung. 34 105-110
  • [8] Rote G(1968)On packing of squares and cubes J. Combin. Theory 5 126-134
  • [9] Woeginger G(1967)Some packing and covering theorems Colloq. Math. 17 103-110
  • [10] Januszewski J(undefined)undefined undefined undefined undefined-undefined