Least Absolute Deviation Estimation for Regression with ARMA Errors

被引:0
作者
Richard A. Davis
William T. M. Dunsmuir
机构
[1] Colorado State University,
[2] University of New South Wales,undefined
来源
Journal of Theoretical Probability | 1997年 / 10卷
关键词
ARMA process; regression; least absolute deviation estimation; central limit theorem;
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic normality for least absolute deviation estimates of the parameters in a linear regression model with autoregressive moving average errors is established under very general conditions. The method of proof is based on a functional limit theorem for the LAD objective function.
引用
收藏
页码:481 / 497
页数:16
相关论文
共 9 条
  • [1] Davis R. A.(1996)Gauss-Newton and Stoch. Proc. Appl. 63 75-95
  • [2] Davis R. A.(1996)-Estimation for ARMA processes with infinite variance Econometric Theory 12 1-29
  • [3] Dunsmuir W. T. M.(1992)Maximum likelihood estimation for MA(1) processes with a root on or near the unit circle Stoch. Proc. Appl. 40 145-180
  • [4] Davis R. A.(1991)-estimation for autoregressions with infinite variance J. Time Series Anal. 12 95-104
  • [5] Knight K.(1991)Strong consistency and asymptotic normality of Econometric Theory 7 186-199
  • [6] Liu J.(undefined) estimates of the autoregressive moving-average model undefined undefined undefined-undefined
  • [7] Dunsmuir W. T. M.(undefined)Asymptotic for least absolute deviation regression estimators undefined undefined undefined-undefined
  • [8] Spencer N. M.(undefined)undefined undefined undefined undefined-undefined
  • [9] Pollard D.(undefined)undefined undefined undefined undefined-undefined