Effect of Nitrogen and Sulfur Co-Doped Graphene on the Electrochemical Hydrogen Storage Performance of Co0.9Cu0.1Si Alloy

被引:0
|
作者
Wenhao Fan
Jianxun Zhao
Dayong Liu
Qingcheng Liang
Wanqiang Liu
Qingshuang Wang
Heng Liu
Peng Chen
Shang Gao
Xinlong Bao
Yong Cheng
Xinwei Wang
Xin Guo
机构
[1] Changchun University of Science and Technology,School of Materials Science and Engineering
[2] Ministry of Education,Engineering Research Center of Optoelectronic Functional Materials
[3] Jilin University,College of Electronic Science and Engineering
[4] Changchun University of Science and Technology,School of Life Science and Technology
[5] Changchun University of Science and Technology,Research Center for Nanotechnology
[6] Research Institute of Changchun University of Science and Technology in Chongqing,State Key Laboratory of Rare Earth Resource Utilization
[7] Changchun Institute of Applied Chemistry,undefined
[8] CAS,undefined
关键词
Co; Cu; Si alloy; Nitrogen–sulfur co-doped graphene (NSG); Composite material; Electrochemical hydrogen storage;
D O I
暂无
中图分类号
学科分类号
摘要
Co0.9Cu0.1Si alloy was prepared by mechanical alloying method. Nitrogen-doped graphene (NG) and nitrogen–sulfur co-doped graphene (NSG) were prepared by hydrothermal method. 5 wt% graphene oxide, NG and NSG were doped into Co0.9Cu0.1Si alloy, respectively, by ball milling to improve the electrochemical hydrogen storage performance of the composite material. X-ray diffraction and scanning electron microscopy were used to characterize the structure and morphology of the composite material, and the LAND battery test system and three-electrode battery system were used to test the electrochemical performance of the composite material. The composite material showed better discharge capacity and better cycle stability than the pristine alloy. In addition, in order to study the optimal ratio of NSG, 3%, 5%, 7% and 10% of NSG were doped into Co0.9Cu0.1Si alloy, respectively. Co0.9Cu0.1Si alloy doped with 5% NSG had the best performance among all the samples. The best discharge capacity was 580.1 mAh/g, and its highest capacity retention rate was 64.1%. The improvement in electrochemical hydrogen storage performance can be attributed to two aspects. On the one hand, the electrocatalytic performance of graphene is improved by co-doping nitrogen and sulfur, on the other hand, graphene has excellent electrical conductivity.
引用
收藏
页码:1023 / 1037
页数:14
相关论文
共 50 条
  • [31] Fabrication of Nitrogen/Boron Highly Co-Doped Graphene Electrode for Enhanced Electrochemical Performance
    Du, Xiangxiang
    Wang, Wenjie
    Han, Meng
    Guo, Xiaoyuan
    Shi, Xuejun
    Cao, Kesheng
    CHEMISTRYSELECT, 2022, 7 (37):
  • [32] Graphene oxide co-doped with nitrogen and sulfur and decorated with cobalt phosphide nanorods: An efficient hybrid catalyst for electrochemical hydrogen evolution
    Lin, Yan
    Pan, Yuan
    Zhang, Jun
    Chen, Yinjuan
    Sun, Kaian
    Liu, Yunqi
    Liu, Chenguang
    ELECTROCHIMICA ACTA, 2016, 222 : 246 - 256
  • [33] Nitrogen, sulfur co-doped reduced graphene oxide: Synthesis and characterization
    Mannan M.A.
    Hirano Y.
    Quitain A.T.
    Koinuma M.
    Kida T.
    Micro and Nanosystems, 2020, 12 (02) : 129 - 134
  • [34] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Fei Dang
    Wei Zhao
    Pengfei Yang
    Huaping Wu
    Yilun Liu
    Journal of Applied Electrochemistry, 2020, 50 : 463 - 473
  • [35] Nitrogen and sulfur co-doped hierarchical graphene hydrogel for high-performance electrode materials
    Dang, Fei
    Zhao, Wei
    Yang, Pengfei
    Wu, Huaping
    Liu, Yilun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2020, 50 (04) : 463 - 473
  • [36] Nitrogen and Sulfur Co-Doped 2D Titanium Carbides for Enhanced Electrochemical Performance
    Yang, Chenhui
    Que, Wenxiu
    Tang, Yi
    Tian, Yapeng
    Yin, Xingtian
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) : A1939 - A1945
  • [37] Solvothermal Synthesis of Mesoporous Manganese Sulfide Nanoparticles Supported on Nitrogen and Sulfur Co-doped Graphene with Superior Lithium Storage Performance
    Li, Gangyong
    He, Binhong
    Zhou, Minjie
    Wang, Guoxiang
    Zhou, Ningbo
    Xu, Wenyuan
    Hou, Zhaohui
    CHEMELECTROCHEM, 2017, 4 (01): : 81 - 89
  • [38] Interaction and Quantum Capacitance of Nitrogen/Sulfur Co-Doped Graphene: A Theoretical Calculation
    Chen, Liangliang
    Li, Xin
    Ma, Chengwei
    Wang, Min
    Zhou, Jiangqi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (34): : 18344 - 18350
  • [39] Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots
    Zhang, Ben-Xing
    Gao, Hui
    Li, Xiao-Long
    NEW JOURNAL OF CHEMISTRY, 2014, 38 (09) : 4615 - 4621
  • [40] A Facile Synthesis of Nitrogen/Sulfur Co-Doped Graphene for the Oxygen Reduction Reaction
    Pan, Fuping
    Duan, Youxin
    Zhang, Xinkai
    Zhang, Junyan
    CHEMCATCHEM, 2016, 8 (01) : 163 - 170