Wronskian, Pfaffian and periodic wave solutions for a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional extended shallow water wave equation

被引:0
作者
Qian-Min Huang
Yi-Tian Gao
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
(2 ;  1)-Dimensional extended shallow water wave equation; Bilinear form; Wronskian; Pfaffian; Soliton solutions; Periodic wave solutions;
D O I
10.1007/s11071-017-3630-y
中图分类号
学科分类号
摘要
Under investigation in this paper is a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional extended shallow water wave equation. Bilinear form is obtained via the generalized dependent variable transformation. The Nth-order analytic solutions are, respectively, obtained via the Wronskian and Pfaffian techniques. Soliton solutions are constructed through the Nth-order solutions. Discussions on the propagation of the solitons indicate that the soliton solutions with φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} are more general than those without φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document}, and φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} could affect the features of the soliton solutions, where φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} is a real function related to the aforementioned transformation. One-periodic wave solutions are obtained via the Hirota–Riemann method. Relation between the one-periodic wave solutions and one-soliton solutions is studied, which indicates that the one-periodic wave solutions can approach to the one-soliton solutions under certain condition.
引用
收藏
页码:2855 / 2866
页数:11
相关论文
共 90 条
[81]  
Wang YH(undefined)undefined undefined undefined undefined-undefined
[82]  
Chen Y(undefined)undefined undefined undefined undefined-undefined
[83]  
Zuo DW(undefined)undefined undefined undefined undefined-undefined
[84]  
Gao YT(undefined)undefined undefined undefined undefined-undefined
[85]  
Yu X(undefined)undefined undefined undefined undefined-undefined
[86]  
Luo L(undefined)undefined undefined undefined undefined-undefined
[87]  
Nimmo JJC(undefined)undefined undefined undefined undefined-undefined
[88]  
Freeman NC(undefined)undefined undefined undefined undefined-undefined
[89]  
Freeman NC(undefined)undefined undefined undefined undefined-undefined
[90]  
Nimmo JJC(undefined)undefined undefined undefined undefined-undefined