Wronskian, Pfaffian and periodic wave solutions for a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional extended shallow water wave equation

被引:0
作者
Qian-Min Huang
Yi-Tian Gao
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
关键词
(2 ;  1)-Dimensional extended shallow water wave equation; Bilinear form; Wronskian; Pfaffian; Soliton solutions; Periodic wave solutions;
D O I
10.1007/s11071-017-3630-y
中图分类号
学科分类号
摘要
Under investigation in this paper is a (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2 + 1)$$\end{document}-dimensional extended shallow water wave equation. Bilinear form is obtained via the generalized dependent variable transformation. The Nth-order analytic solutions are, respectively, obtained via the Wronskian and Pfaffian techniques. Soliton solutions are constructed through the Nth-order solutions. Discussions on the propagation of the solitons indicate that the soliton solutions with φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} are more general than those without φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document}, and φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} could affect the features of the soliton solutions, where φ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (y)$$\end{document} is a real function related to the aforementioned transformation. One-periodic wave solutions are obtained via the Hirota–Riemann method. Relation between the one-periodic wave solutions and one-soliton solutions is studied, which indicates that the one-periodic wave solutions can approach to the one-soliton solutions under certain condition.
引用
收藏
页码:2855 / 2866
页数:11
相关论文
共 90 条
[1]  
Chai J(2017)Dynamic behaviors for a perturbed nonlinear Schrodinger equation with the power-law nonlinearity in a non-Kerr medium Commun. Nonlinear Sci. Numer. Simul. 45 93-103
[2]  
Tian B(2010)The Peregrine soliton in nonlinear fibre optics Nat. Phys. 6 790-795
[3]  
Zhen HL(2002)Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction Phys. Rev. Lett. 88 135002-519
[4]  
Sun WR(2016)The Wronskian technique for nonlinear evolution equations Chin. Phys. B 25 514-33
[5]  
Liu DY(2014)Generalized Wronskian and Grammian solutions to a isospectral B-type Kadomtsev–Petviashvili equation J. Nonlinear Math. Phys. 21 17-754
[6]  
Kibler B(2013)Wronskian solution of general nonlinear evolution equations and Young diagram prove Acta Phys. Sin. 62 750-15008
[7]  
Fatome J(2013)A Wronskian formulation of the ( Phys. Scr. 88 15002-10023
[8]  
Finot C(2011))-dimensional generalized BKP equation Appl. Math. Comput. 217 10016-5542
[9]  
Borghesi M(2012)Wronskian and Grammian solutions to a ( Appl. Math. Comput. 218 5524-91
[10]  
Bulanov S(2012))-dimensional generalized KP equation Chin. Phys. B 21 85-6638