Adaptive neuro-fuzzy inference technique for estimation of light penetration in reservoirs

被引:0
|
作者
Selçuk Soyupak
Feza Karaer
Engin Şentürk
Hűseyin Hekim
机构
[1] Atilim University,Faculty of Engineering, Department of Civil Engineering
[2] Uludağ University,Faculty of Engineering and Architecture, Department of Environmental Engineering
[3] State Hydraulic Works of Turkey,undefined
[4] 1st Division,undefined
来源
Limnology | 2007年 / 8卷
关键词
Reservoirs; Modeling; Light penetration; Neuro-fuzzy inference; ANFIS;
D O I
暂无
中图分类号
学科分类号
摘要
An adaptive neuro-fuzzy inference technique has been adopted to estimate light levels in a reservoir. The data were collected randomly from Doğanci Dam Reservoir over a number of years. The input data set is a matrix with vectors of time, depth, sampling location, and incident solar radiation. The output data set is a vector representing light measured at various depths. Randomization and logarithmic transformations have been applied as preprocessing. One-half of the data have been utilized for training; testing and validation steps utilized one-fourth each. An adaptive neuro-fuzzy inference system (ANFIS) has been built as a prediction model for light penetration. Very high correlation values between predictions and real values on light measurements with relatively low root mean square error values have been obtained for training, test, and validation data sets. Elimination of the overtraining problem was ensured by satisfying close root mean square error values for all sets.
引用
收藏
页码:103 / 112
页数:9
相关论文
共 50 条
  • [1] Adaptive neuro-fuzzy inference technique for estimation of light penetration in reservoirs
    Soyupak, Selcuk
    Karaer, Feza
    Sentuerk, Engin
    Hekim, Huseyin
    LIMNOLOGY, 2007, 8 (02) : 103 - 112
  • [2] Adaptive Neuro-fuzzy Inference system into Induction Motor : Estimation
    Boussada, Zina
    Ben Hamed, Mouna
    Sbita, Lassaad
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL SCIENCES AND TECHNOLOGIES IN MAGHREB (CISTEM), 2014,
  • [3] Channel estimation based on adaptive neuro-fuzzy inference system in OFDM
    Seyman, M. Nuri
    Taspinar, Necmi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2008, E91B (07) : 2426 - 2430
  • [5] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553
  • [6] Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system
    Jokar, Mehdi Hashemi
    Khosravi, Abdolkarim
    Heidaripanah, Ali
    Soltani, Fazlollah
    SOFT COMPUTING, 2019, 23 (16) : 6871 - 6881
  • [7] Unsaturated soils permeability estimation by adaptive neuro-fuzzy inference system
    Mehdi Hashemi Jokar
    Abdolkarim Khosravi
    Ali Heidaripanah
    Fazlollah Soltani
    Soft Computing, 2019, 23 : 6871 - 6881
  • [8] Implementation of Adaptive Neuro-Fuzzy Inference System in Fault Location Estimation
    Abdullah, Amalina
    Banmongkol, Channarong
    Hoonchareon, Naebboon
    Hidaka, Kunihiko
    9TH INTERNATIONAL CONFERENCE ON ROBOTIC, VISION, SIGNAL PROCESSING AND POWER APPLICATIONS: EMPOWERING RESEARCH AND INNOVATION, 2017, 398 : 737 - 748
  • [9] Estimation of Housing Demand with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
    Aydin, Olgun
    Hayat, Elvan Akturk
    IMPACT OF GLOBALIZATION ON INTERNATIONAL FINANCE AND ACCOUNTING, 2018, : 449 - 455
  • [10] Estimation of natural gases water content using adaptive neuro-fuzzy inference system
    Baghban, Alireza
    Kashiwao, Tomoaki
    Bahadori, Meysam
    Ahmad, Zainal
    Bahadori, Alireza
    PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (10) : 891 - 897