Controlling solid-liquid interfacial energy anisotropy through the isotropic liquid

被引:0
|
作者
Lei Wang
Jeffrey J. Hoyt
Nan Wang
Nikolas Provatas
Chad W. Sinclair
机构
[1] The University of British Columbia,Department of Materials Engineering
[2] Northwestern Polytechnical University,Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Science
[3] McMaster University,Department of Materials Science and Engineering
[4] McGill University,Department of Physics and Centre for the Physics of Materials
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Although the anisotropy of the solid-liquid interfacial free energy for most alloy systems is very small, it plays a crucial role in the growth rate, morphology and crystallographic growth direction of dendrites. Previous work posited a dendrite orientation transition via compositional additions. In this work we examine experimentally the change in dendrite growth behaviour in the Al-Sm (Samarium) system as a function of solute concentration and study its interfacial properties using molecular dynamics simulations. We observe a dendrite growth direction which changes from ⟨100⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 100\rangle$$\end{document} to ⟨110⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle 110\rangle$$\end{document} as Sm content increases. The observed change in dendrite orientation is consistent with the simulation results for the variation of the interfacial free energy anisotropy and thus provides definitive confirmation of a conjecture in previous works. In addition, our results provide physical insight into the atomic structural origin of the concentration dependent anisotropy, and deepen our fundamental understanding of solid-liquid interfaces in binary alloys.
引用
收藏
相关论文
共 50 条
  • [31] Effect of high gravity on the solid-liquid interfacial free energy
    Patuelli, C
    Tognato, R
    PROCESSING BY CENTRIFUGATION, 2001, : 361 - 366
  • [33] Nucleation behavior and solid-liquid interfacial energy of polytetrahedral phases
    Holland-Moritz, D
    NUCLEATION AND GROWTH PROCESSES IN MATERIALS, 2000, 580 : 245 - 250
  • [34] Patterned Surface Energy for Modulating Solid-Liquid Interfacial Properties
    Liu, Wanling
    Li, Kaixuan
    Song, Yanlin
    Li, Huizeng
    ACS NANO, 2025, 19 (11) : 10755 - 10765
  • [35] Development of Solid-Liquid Interfacial Energy of Melt-Crystal
    Jian Zengyun
    Xu Tao
    Xu Junfeng
    Zhu Man
    Chang Fang'e
    ACTA METALLURGICA SINICA, 2018, 54 (05) : 766 - 772
  • [36] Molecular dynamics calculation of solid-liquid interfacial free energy and its anisotropy during iron solidification
    Liu, J.
    Davidchack, R. L.
    Dong, H. B.
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 74 : 92 - 100
  • [37] Morphological diversity in directionally-solidified microstructures with varying anisotropy of solid-liquid interfacial free energy
    Kim, Geunwoo
    Takaki, Tomohiro
    Shibuta, Yasushi
    Ko, Hyunseok
    Ohno, Munekazu
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 4044 - 4052
  • [38] The influence of solid-liquid interfacial energy anisotropy on equilibrium shapes, nucleation, triple lines and growth morphologies
    Rappaz, M.
    Friedli, J.
    Mariaux, A.
    Salgado-Ordorica, M.
    SCRIPTA MATERIALIA, 2010, 62 (12) : 904 - 909
  • [39] INTERFACIAL TENSION SOLID-LIQUID OF BENZENE
    SKAPSKI, A
    BILLUPS, R
    CASAVANT, D
    JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1431 - 1431
  • [40] INTERFACIAL EFFECTS IN SOLID-LIQUID SEPARATIONS
    ROTH, JE
    CHEMIE INGENIEUR TECHNIK, 1991, 63 (02) : 104 - 115