A caching mechanism to exploit object store speed in High Energy Physics analysis

被引:0
|
作者
Vincenzo Eduardo Padulano
Enric Tejedor Saavedra
Pedro Alonso-Jordá
Javier López Gómez
Jakob Blomer
机构
[1] EP-SFT,Department of Computation Systems and Computation
[2] CERN,undefined
[3] Universitat Politècnica de València,undefined
来源
Cluster Computing | 2023年 / 26卷
关键词
ROOT; High Energy Physics; Caching; Object store; DAOS;
D O I
暂无
中图分类号
学科分类号
摘要
Data analysis workflows in High Energy Physics (HEP) read data written in the ROOT columnar format. Such data has traditionally been stored in files that are often read via the network from remote storage facilities, which represents a performance penalty especially for data processing workflows that are I/O bound. To address that issue, this paper presents a new caching mechanism, implemented in the I/O subsystem of ROOT, which is independent of the storage backend used to write the dataset. Notably, it can be used to leverage the speed of high-bandwidth, low-latency object stores. The performance of this caching approach is evaluated by running a real physics analysis on an Intel DAOS cluster, both on a single node and distributed on multiple nodes.
引用
收藏
页码:2757 / 2772
页数:15
相关论文
共 50 条
  • [1] A caching mechanism to exploit object store speed in High Energy Physics analysis
    Eduardo Padulano, Vincenzo
    Saavedra, Enric Tejedor
    Alonso-Jorda, Pedro
    Gomez, Javier Lopez
    Blomer, Jakob
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (05): : 2757 - 2772
  • [2] Smart Caching in a Data Lake for High Energy Physics Analysis
    Tedeschi, Tommaso
    Baioletti, Marco
    Ciangottini, Diego
    Poggioni, Valentina
    Spiga, Daniele
    Storchi, Loriano
    Tracolli, Mirco
    JOURNAL OF GRID COMPUTING, 2023, 21 (03)
  • [3] Smart Caching in a Data Lake for High Energy Physics Analysis
    Tommaso Tedeschi
    Marco Baioletti
    Diego Ciangottini
    Valentina Poggioni
    Daniele Spiga
    Loriano Storchi
    Mirco Tracolli
    Journal of Grid Computing, 2023, 21
  • [4] Object oriented databases in high energy physics
    Binko, P
    1997 CERN SCHOOL OF COMPUTING, 1997, 97 (08): : 29 - 32
  • [5] Object databases as data stores for high energy physics
    Düllmann, D
    1998 CERN SCHOOL OF COMPUTING, PROCEEDINGS, 1998, 98 (08): : 71 - 85
  • [6] Large, high-speed memory buffer for high energy physics data
    Plaag, Robert E.
    Rutherfoord, John P.
    Nuclear instruments and methods in physics research, 1988, 273 (01): : 177 - 184
  • [7] High speed neural network chip for trigger purposes in high energy physics
    Eppler, W
    Fischer, T
    Gemmeke, H
    Menchikov, A
    DESIGN, AUTOMATION AND TEST IN EUROPE, PROCEEDINGS, 1998, : 108 - 115
  • [8] KEKNET, A HIGH-SPEED ONLINE NETWORK FOR HIGH-ENERGY PHYSICS
    ASANO, Y
    INABA, S
    KABE, S
    KAISE, A
    KARITA, Y
    KATOH, T
    NAGASHIMA, Y
    SHIBATA, S
    TAKAHASHI, H
    UCHINO, K
    YASU, Y
    YOSHIKI, H
    NUCLEAR INSTRUMENTS & METHODS, 1979, 159 (01): : 7 - 19
  • [9] Advanced analysis methods in high energy physics
    Bhat, PC
    ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2001, 583 : 22 - 30
  • [10] High-speed distributed data handling for high-energy and nuclear physics
    Johnston, WE
    Greiman, W
    Tierney, B
    Shoshani, A
    Tull, C
    1997 CERN SCHOOL OF COMPUTING, 1997, 97 (08): : 85 - 96