Log-convexity properties of Schur functions and generalized hypergeometric functions of matrix argument

被引:0
作者
Donald St. P. Richards
机构
[1] Penn State University,Department of Statistics
来源
The Ramanujan Journal | 2010年 / 23卷
关键词
Finite distributive lattice; FKG inequality; Generalized hypergeometric function of matrix argument; Log-supermodular; Monomial-positivity; Partition; Multivariate total positivity; Schur function; Schur-positivity; Sylvester’s formula; Symmetric function; Young tableaux; Zonal polynomial; 05E05; 33C67; 05A17; 15A15; 60E15;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a positivity property for the difference of products of certain Schur functions, sλ(x), where λ varies over a fundamental Weyl chamber in ℝn and x belongs to the positive orthant in ℝn. Further, we generalize that result to the difference of certain products of arbitrary numbers of Schur functions. We also derive a log-convexity property of the generalized hypergeometric functions of two Hermitian matrix arguments, and we show how that result may be extended to derive higher-order log-convexity properties.
引用
收藏
页码:397 / 407
页数:10
相关论文
共 23 条
[1]  
Battle G.A.(1980)The FKG inequality for the Yukawa quantum field theory J. Stat. Phys. 22 123-192
[2]  
Rosen L.(1968)An inequality for subadditive functions on a distributive lattice, with application to determinantal inequalities Linear Algebra Appl. 1 33-38
[3]  
Fan K.(1971)Correlation inequalities on some partially ordered sets Commun. Math. Phys. 22 89-103
[4]  
Fortuin C.M.(1987)Total positivity, spherical series, and hypergeometric functions of matrix argument J. Approx. Theory 59 224-246
[5]  
Kasteleyn P.W.(1995)Total positivity, finite reflection groups, and a formula of Harish-Chandra J. Approx. Theory 82 60-87
[6]  
Ginibre J.(1991)Diffusion equation techniques in stochastic monotonicity and positive correlations Probab. Theory Relat. Fields 87 275-312
[7]  
Gross K.I.(1964)Distributions of matrix variates and latent roots derived from normal samples Ann. Math. Stat. 35 475-501
[8]  
Richards D.St.P.(1980)Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions J. Multivar. Anal. 10 467-498
[9]  
Gross K.I.(2007)Schur positivity and Schur log-concavity Am. J. Math. 129 1611-1622
[10]  
Richards D.St.P.(2007)Cell transfer and monomial positivity J. Algebr. Comb. 26 209-224