An application study on multimodal fake news detection based on Albert-ResNet50 Model

被引:0
|
作者
Mingyue Jiang
Chang Jing
Liming Chen
Yang Wang
Shouqiang Liu
机构
[1] China Normal University Nanhai,School of Electronics and Information Engineering, Faculty of Engineering South
[2] Guangdong University of Foreign Studies Guangzhou,Institute of Intelligent Information Processing South China Business College
[3] China Normal University Guangzhou,School of Physics and Telecommunications Engineering South
[4] China Normal University Nanhai,School of Artificial Intelligence, Faculty of Engineering South
来源
关键词
Fake news; Multimodal; Albert; ResNet50; Pre-trained model;
D O I
暂无
中图分类号
学科分类号
摘要
In today’s interconnected world, where individuals can create and receive information freely, the proliferation of fake news has become a significant issue. This type of false information frequently appears in areas such as business or politics, and its widespread dissemination on the internet can disrupt the normal social order and create a biased net- work atmosphere, ultimately leading to the destruction of the normal network environment. The evolution of fake news, from early plain text to complex images and texts, has made its detection more difficult. To address this, we propose an Albert ResNet50 hybrid deep neural net- work model that combines implicit features of both text and images for detecting multimodal fake news. We tested our model on three fake news datasets, and the results showed an accuracy rate of 90.51%, 79.87%, and 92.93%, respectively. Compared to traditional models that only use text data, our multimodal model can better identify fake news.
引用
收藏
页码:8689 / 8706
页数:17
相关论文
共 50 条
  • [1] An application study on multimodal fake news detection based on Albert-ResNet50 Model
    Jiang, Mingyue
    Jing, Chang
    Chen, Liming
    Wang, Yang
    Liu, Shouqiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8689 - 8706
  • [2] Fake News Detection Based on Multimodal Inputs
    Liang, Zhiping
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 4519 - 4534
  • [3] Multimodal Approaches based on Fake News Detection
    Reddy, Bandi Sravani
    Siva Kumar, A.P.
    Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, : 751 - 755
  • [4] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    INFORMATION, 2022, 13 (06)
  • [5] Research on fake news detection based on CLIP multimodal mechanism
    Xu, Jinzhong
    Zhang, Yujie
    Liu, Weiguang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 72 - 79
  • [6] Fake News Detection Based on the Correlation Extension of Multimodal Information
    Li, Yanqiang
    Ji, Ke
    Ma, Kun
    Chen, Zhenxiang
    Zhou, Jin
    Wu, Jun
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 443 - 450
  • [7] OVERVIEW OF MULTIMODAL DATA AND ITS APPLICATION TO FAKE- NEWS DETECTION
    Boyko, Nataliya
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2024, 10 (03): : 281 - 293
  • [8] A two-branch multimodal fake news detection model based on multimodal bilinear pooling and attention mechanism
    Guo, Ying
    Ge, Hong
    Li, Jinhong
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [9] Improving Generalization for Multimodal Fake News Detection
    Tahmasebi, Sahar
    Hakimov, Sherzod
    Ewerth, Ralph
    Mueller-Budack, Eric
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 581 - 585
  • [10] AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection
    Kumari, Rina
    Ekbal, Asif
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184