Positive solutions with single and multi-peak for semilinear elliptic equations with nonlinear boundary condition in the half-space

被引:0
|
作者
Li Wang
Peihao Zhao
机构
[1] Lanzhou University,School of Mathematics and Statistics
来源
Proceedings - Mathematical Sciences | 2018年 / 128卷
关键词
Elliptic equation; multi-peak solutions; singular perturbation; nonlinear boundary condition; 26A33; 65M12; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the existence of single and multi-peak solutions of the following nonlinear elliptic Neumann problem -Δu+λ2u=Q(x)|u|p-2uinR+N,∂u∂n=f(x,u)on∂R+N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned} -\Delta u+\lambda ^{2} u&=Q(x)|u|^{p-2}u \qquad&\text {in} ~~~~\mathbb {R}^{N}_{+}, \\ \frac{\partial u }{\partial n}&=f(x,u) \qquad&\text {on}~~\partial \mathbb {R}^{N}_{+}, \end{aligned}\right. \end{aligned}$$\end{document}where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is a large number, p∈(2,2NN-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (2,\frac{2N}{N-2})$$\end{document} for N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, f(x, u) is subcritical about u and Q is positive and has some non-degenerate critical points in R+N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N}_{+}$$\end{document}. For λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} large, we can get solutions which have peaks near the non-degenerate critical points of Q.
引用
收藏
相关论文
共 20 条