The multiplication of distributions in the study of delta shock waves for zero-pressure gasdynamics system with energy conservation laws

被引:0
作者
Anupam Sen
T. Raja Sekhar
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Delta shock wave; Product of distributions; Riemann problem; Zero-pressure gasdynamics with energy conservation laws; 35L65; 35L67; 46F10; 35D99; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the delta shock wave for zero-pressure gasdynamics system with energy conservation laws in the frame of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-solutions defined in the setting of distributional products. By reformulating the system, we construct within a convenient space of distributions, all solutions which include discontinuous solutions and Dirac delta measures. We also establish the generalized Rankine–Hugoniot jump conditions for delta shock waves. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-solutions which we constructed coincide with the solution obtained through different methods.
引用
收藏
页码:653 / 678
页数:25
相关论文
共 53 条
[21]  
Sen A(2010)Distributional products and global solutions for nonconservative inviscid Burgers equation SIAM J. Numer. Anal. 48 1900-381
[22]  
Raja Sekhar T(2005)New solutions for the one-dimensional nonconservative inviscid Burgers equation J. Differ. Equ. 211 333-427
[23]  
Sharma VD(2005)Shadow waves for pressureless gas balance laws Q. Appl. Math. 63 401-350
[24]  
Sen A(2012)A method of projection of delta waves in a Godunov scheme and application to pressureless fluid dynamics IMA J. Appl. Math. 77 340-68
[25]  
Raja Sekhar T(2019)Dynamics of propagation and interaction of Appl. Math. Lett. 96 61-1198
[26]  
Joseph KT(2018)-shock waves in conservation law systems J. Dyn. Differ. Equ. 30 1187-954
[27]  
Tan D(2014)Delta-shock wave type solution of hyperbolic systems of conservation laws Chin. Ann. Math. Ser. B 35 941-527
[28]  
Zhang T(2015)Singular solutions for the shallow-water equations Russ. J. Math. Phys. 22 518-212
[29]  
Zheng Y(2018)The multiplication of distributions in the study of delta shock wave for the nonlinear chromatography system Pac. J. Math. 294 195-1014
[30]  
Shukla TP(2012)Delta shock waves in the shallow water system Int. J. Math. Anal. 6 999-undefined