The multiplication of distributions in the study of delta shock waves for zero-pressure gasdynamics system with energy conservation laws

被引:0
作者
Anupam Sen
T. Raja Sekhar
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
来源
Ricerche di Matematica | 2023年 / 72卷
关键词
Delta shock wave; Product of distributions; Riemann problem; Zero-pressure gasdynamics with energy conservation laws; 35L65; 35L67; 46F10; 35D99; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the delta shock wave for zero-pressure gasdynamics system with energy conservation laws in the frame of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-solutions defined in the setting of distributional products. By reformulating the system, we construct within a convenient space of distributions, all solutions which include discontinuous solutions and Dirac delta measures. We also establish the generalized Rankine–Hugoniot jump conditions for delta shock waves. The α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-solutions which we constructed coincide with the solution obtained through different methods.
引用
收藏
页码:653 / 678
页数:25
相关论文
共 53 条
[1]  
Brenier Y(1998)Sticky particles and scalar conservation laws SIAM J. Numer. Anal. 35 2317-2328
[2]  
Grenier E(1996)Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics Commun. Math. Phys. 177 349-380
[3]  
Weinan EYG(2011)Mass, momentum and energy conservation laws in zero-pressure gas dynamics and Appl. Anal. 90 831-842
[4]  
Rykov YG(2011)-shocks: II Appl. Anal. 90 1677-1689
[5]  
Sinai YG(2012)Mass, momentum and energy conservation laws in zero-pressure gas dynamics and delta-shocks Differ. Equ. Appl. 4 653-664
[6]  
Nilsson B(2018)Riemann problem for one-dimensional system of conservation laws of mass, momentum and energy in zero-pressure gas dynamics Commun. Pure Appl. Anal. 18 931-942
[7]  
Rozanova OS(2018)Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation Math. Methods Appl. Sci. 41 4528-4548
[8]  
Shelkovich VM(2015)The limits of Riemann solutions to the simplified pressureless Euler system with flux approximation Sci. China Math. 58 2329-2346
[9]  
Nilsson B(2003)Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation SIAM J. Math. Anal. 34 925-938
[10]  
Shelkovich VM(2008)Formation of J. Math. Anal. Appl. 344 1143-1157