Lp-Approximation of the Integrated Density of States for Schrödinger Operators with Finite Local Complexity

被引:0
作者
Michael J. Gruber
Daniel H. Lenz
Ivan Veselić
机构
[1] TU Clausthal,Institut für Mathematik
[2] Friedrich-Schiller-Universität Jena,Mathematisches Institut
[3] TU Chemnitz,Emmy
来源
Integral Equations and Operator Theory | 2011年 / 69卷
关键词
35J10; 81Q10; Integrated density of states; random Schrödinger operators; finite local complexity;
D O I
暂无
中图分类号
学科分类号
摘要
We study spectral properties of Schrödinger operators on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R^d}$$\end{document} . The electromagnetic potential is assumed to be determined locally by a colouring of the lattice points in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb Z^d}$$\end{document} , with the property that frequencies of finite patterns are well defined. We prove that the integrated density of states (spectral distribution function) is approximated by its finite volume analogues, i.e. the normalised eigenvalue counting functions. The convergence holds in the space Lp(I) where I is any finite energy interval and 1 ≤ p < ∞ is arbitrary.
引用
收藏
页码:217 / 232
页数:15
相关论文
共 28 条
[1]  
Combes J.-M.(1996)Landau Hamiltonians with random potentials: localization and the density of states Comm. Math. Phys. 177 603-629
[2]  
Hislop P.D.(2007)An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators Duke Math. J. 140 469-498
[3]  
Combes J.-M.(2007)Uniform existence of the integrated density of states for random Schrödinger operators on metric graphs over J. Funct. Anal. 253 515-533
[4]  
Hislop P.D.(2006)Bounds on the spectral shift function and the density of states Comm. Math. Phys. 262 489-503
[5]  
Klopp F.(2002)An optimal J. Anal. Math. 87 199-208
[6]  
Gruber M.J.(2001)-bound on the Krein spectral shift function Comm. Math. Phys. 221 229-254
[7]  
Lenz D.H.(2008)The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials Positivity 12 571-589
[8]  
Veselić I.(2009)Uniform existence of the integrated density of states for models on Math. Z. 263 813-835
[9]  
Hundertmark D.(2002)Hamiltonians on discrete structures: jumps of the integrated density of states and uniform convergence C. R. Math. Acad. Sci. Paris 335 683-688
[10]  
Killip R.(1979)Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials Uspekhi Mat. Nauk 34 95-135