Jacobi spectral projection methods for Fredholm integral equations of the first kind

被引:0
作者
Subhashree Patel
Bijaya Laxmi Panigrahi
机构
[1] Sambalpur University,Department of Mathematics
[2] Gangadhar Meher University,Department of Mathematics
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Ill-posed problems; Fredholm integral equation of the first kind; Galerkin method; Tikhonov regularization method; Jacobi polynomials; 45B05; 65J20; 65R30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ Tikhonov regularization method with the projection methods using Jacobi polynomial bases to the first kind of Fredholm integral equations to find the approximate solution. We discuss the convergence analysis and obtain the convergence rates in Lwα,β2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}^{\textbf{2}}_{\varvec{w}^{\varvec{\alpha ,\beta }}}$$\end{document} norm under a priori parameter choice strategy. We also consider the Engl-type discrepancy principle as a posteriori parameter strategy for finding the regularization parameter and also evaluate the convergence rate which is of optimal order. Finally, we provide the numerical experiments to justify the theoretical results.
引用
收藏
页码:33 / 57
页数:24
相关论文
共 28 条
[1]  
Bahmanpour M(2019)Solving Fredholm integral equations of the first kind using Müntz wavelets Appl. Numer. Math. 143 159-171
[2]  
Kajani MT(2008)Fast collocation methods for solving ill-posed integral equations of the first kind Inverse Probl. 24 1-21
[3]  
Maleki M(1988)Projection-regularization methods for linear operator equations of the first kind Proceedings of the Centre for Mathematical Analysis, Austrailian National University 17 17-31
[4]  
Chen Z(1987)Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rates J. Optim. Th and Appl. 52 209-215
[5]  
Xu Y(1990)Convergence analysis of a regularized degenerate kernel method for Fredholm integral equation of the first kind Integral Equ. Oper. Theory 13 67-75
[6]  
Yang H(2007)Integral equations of the first kind, inverse problems and regularization: a crash course J. Phys. Conf. Ser. 73 1-32
[7]  
Engl HW(2012)A fast multiscale Galerkin method for ill-posed integral equations with not exactly given input data via Tikhonov regularization J. Inverse Ill-posed Prob. 20 367-385
[8]  
Groetsch CW(2016)Projected Tikhonov regularization method for Fredholm integral equations of the first kind J. Inequal. Appl. 195 1-21
[9]  
Engl HW(2022)Legendre spectral projection methods for Fredholm integral equations of first kind J. Inverse Ill-Posed Probl. 30 677-691
[10]  
Groetsch CW(2003)Convergence analysis of a regularized approximation for solving Fredholm integral equations of the first kind J. Math. Anal. Appl. 279 522-530