Monopoles on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} from the fuzzy conifold

被引:0
作者
Nirmalendu Acharyya
Sachindeo Vaidya
机构
[1] Indian Institute of Science,Centre for High Energy Physics
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry;
D O I
10.1007/JHEP06(2013)034
中图分类号
学科分类号
摘要
The intersection of the conifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ z_1^2+z_2^2+z_3^2=0 $\end{document} and S5 is a compact 3-dimensional manifold X3. We review the description of X3 as a principal U(1) bundle over S2 and construct the associated monopole line bundles. These monopoles can have only even integers as their charge. We also show the Kaluza-Klein reduction of X3 to S2 provides an easy construction of these monopoles. Using the analogue of the Jordan-Schwinger map, our techniques are readily adapted to give the fuzzy version of the fibration X3 → S2 and the associated line bundles. This is an alternative new realization of the fuzzy sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} and monopoles on it.
引用
收藏
相关论文
共 50 条
[33]   On the instantons and the hypermultiplet mass of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = {{2}^{ * }} $\end{document} super Yang-Mills on S4 [J].
Takuya Okuda ;
Vasily Pestun .
Journal of High Energy Physics, 2012 (3)
[34]   \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ N = \frac{1}{2} $\end{document} deformations of chiral superspaces from new quantum Poincaré and Euclidean superalgebras [J].
A. Borowiec ;
J. Lukierski ;
M. Mozrzymas ;
V. N. Tolstoy .
Journal of High Energy Physics, 2012 (6)
[35]   Vortex-strings in N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD and bulk-string decoupling [J].
Efrat Gerchkovitz ;
Avner Karasik .
Journal of High Energy Physics, 2018 (2)
[36]   Classification of BPS objects in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 6 $\end{document} Chern-Simons matter theory [J].
Toshiaki Fujimori ;
Koh Iwasaki ;
Yoshishige Kobayashi ;
Shin Sasaki .
Journal of High Energy Physics, 2010 (10)
[38]   Aspects of 3d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} Chern-Simons-Matter theories [J].
Kenneth Intriligator ;
Nathan Seiberg .
Journal of High Energy Physics, 2013 (7)