Monopoles on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} from the fuzzy conifold

被引:0
作者
Nirmalendu Acharyya
Sachindeo Vaidya
机构
[1] Indian Institute of Science,Centre for High Energy Physics
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry;
D O I
10.1007/JHEP06(2013)034
中图分类号
学科分类号
摘要
The intersection of the conifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ z_1^2+z_2^2+z_3^2=0 $\end{document} and S5 is a compact 3-dimensional manifold X3. We review the description of X3 as a principal U(1) bundle over S2 and construct the associated monopole line bundles. These monopoles can have only even integers as their charge. We also show the Kaluza-Klein reduction of X3 to S2 provides an easy construction of these monopoles. Using the analogue of the Jordan-Schwinger map, our techniques are readily adapted to give the fuzzy version of the fibration X3 → S2 and the associated line bundles. This is an alternative new realization of the fuzzy sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} and monopoles on it.
引用
收藏
相关论文
共 50 条
[21]   Modular anomaly equations and S-duality in N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} conformal SQCD [J].
S.K. Ashok ;
M. Billò ;
E. Dell’Aquila ;
M. Frau ;
A. Lerda ;
M. Raman .
Journal of High Energy Physics, 2015 (10)
[22]   Real symmetric Φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Phi ^4$$\end{document}-matrix model as Calogero–Moser model [J].
Harald Grosse ;
Naoyuki Kanomata ;
Akifumi Sako ;
Raimar Wulkenhaar .
Letters in Mathematical Physics, 114 (1)
[23]   S-duality, triangle groups and modular anomalies in N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD [J].
S. K. Ashok ;
E. Dell’Aquila ;
A. Lerda ;
M. Raman .
Journal of High Energy Physics, 2016 (4)
[24]   Noncommutative ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^d $$\end{document} via closed star product [J].
V. G. Kupriyanov ;
P. Vitale .
Journal of High Energy Physics, 2015 (8)
[25]   On emergent directions in weakly coupled, large NcN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 SYM [J].
Baiyang Zhang ;
Aditya Dhumuntarao .
Journal of High Energy Physics, 2025 (5)
[26]   Feynman–Kac formula for perturbations of order ≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 1$$\end{document}, and noncommutative geometry [J].
Sebastian Boldt ;
Batu Güneysu .
Stochastics and Partial Differential Equations: Analysis and Computations, 2023, 11 (4) :1519-1552
[27]   Noncommutative Cohomology and Electromagnetism on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{C}$$ \end{document}q[SL2] at Roots of Unity [J].
Xavier Gomez ;
Shahn Majid .
Letters in Mathematical Physics, 2002, 60 (3) :221-237
[28]   Chiral observables and S-duality in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2⋆ U(N ) gauge theories [J].
S. K. Ashok ;
M. Billò ;
E. Dell’Aquila ;
M. Frau ;
A. Lerda ;
M. Moskovic ;
M. Raman .
Journal of High Energy Physics, 2016 (11)
[29]   Gravity duals of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs and asymptotic emergence of the electrostatic description [J].
P. Marios Petropoulos ;
Konstadinos Sfetsos ;
Konstadinos Siampos .
Journal of High Energy Physics, 2014 (9)