Monopoles on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} from the fuzzy conifold

被引:0
作者
Nirmalendu Acharyya
Sachindeo Vaidya
机构
[1] Indian Institute of Science,Centre for High Energy Physics
关键词
Solitons Monopoles and Instantons; Non-Commutative Geometry;
D O I
10.1007/JHEP06(2013)034
中图分类号
学科分类号
摘要
The intersection of the conifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ z_1^2+z_2^2+z_3^2=0 $\end{document} and S5 is a compact 3-dimensional manifold X3. We review the description of X3 as a principal U(1) bundle over S2 and construct the associated monopole line bundles. These monopoles can have only even integers as their charge. We also show the Kaluza-Klein reduction of X3 to S2 provides an easy construction of these monopoles. Using the analogue of the Jordan-Schwinger map, our techniques are readily adapted to give the fuzzy version of the fibration X3 → S2 and the associated line bundles. This is an alternative new realization of the fuzzy sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ S_F^2 $\end{document} and monopoles on it.
引用
收藏
相关论文
共 50 条