Determination of 1p- and 2p-stripping excitation functions for 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O+142\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{142}$$\end{document}Ce using a recoil mass spectrometer

被引:0
作者
Rohan Biswas
S. Nath
J. Gehlot
Chandra Gonika
A. Kumar
N. Parihari
A. Madhavan
Amritraj Vinayak
Shoaib Mahato
Phurba Noor
Kazuyuki Sherpa
机构
[1] Inter-University Accelerator Centre,Nuclear Physics Group
[2] Delhi University,Department of Physics and Astrophysics
[3] Karnatak University,Department of Physics
[4] Central University of Jharkhand,Department of Physics
[5] Thapar Institute of Engineering and Technology,School of Physics and Materials Science
[6] Tokyo Institute of Technology,Department of Physics, School of Science
[7] University of Tsukuba,Nuclear Physics Division, Center for Computational Sciences
[8] Diamond Light Source Ltd., Life Science Division
[9] Diamond House,undefined
[10] Harwell Science and Innovation Campus,undefined
关键词
D O I
10.1140/epja/s10050-023-00975-z
中图分类号
学科分类号
摘要
We report the first direct measurement of differential transfer cross sections using a Recoil Mass Spectrometer. Absolute differential 1p- and 2p-stripping cross sections at θc.m.=180∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _\mathrm {c.m.}=180^\circ $$\end{document} have been determined for the system 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{16}$$\end{document}O+142\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{142}$$\end{document}Ce by detecting the heavier target-like ions at the focal plane of the Heavy Ion Reaction Analyzer. Focal plane spectra have been compared with the results of a semi-microscopic Monte-Carlo simulation to unambiguously identify the transfer channels. The methodology adopted in this work can be applied to measure multi-nucleon transfer cross sections using other similar recoil separators. The experimental excitation functions for the reactions 142Ce(16O,15N)143Pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{142}\mathrm {Ce(}^{16}\textrm{O,}^{15}\mathrm {N)}^{143}\textrm{Pr}$$\end{document} and 142Ce(16O,14C)144Nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{142}\mathrm {Ce(}^{16}\textrm{O,}^{14}\mathrm {C)}^{144}\textrm{Nd}$$\end{document} have been compared with coupled reaction channels calculations. Shell model calculations have been performed to extract spectroscopic information for the target-like nuclei. An excellent matching between measurement and theory has been obtained for 1p-stripping. For 2p-stripping, cluster transfer of two protons has been found to have dominant contribution. Measured transfer probabilities for 1p- and 2p-stripping channels have been compared with Time-Dependent Hartree–Fock calculations. Proton stripping channels are found to be more favourable compared to neutron pick-up channels. However, the theory overpredicts the measurement hinting at the need for extended approaches with explicit treatment of pairing correlations in the calculations.
引用
收藏
相关论文
共 340 条
  • [1] Kaufmann R(1961)Nucleon transfer reactions in grazing collisions of heavy ions Phys. Rev. 121 192-undefined
  • [2] Wolfgang R(1978)Deep inelastic transfer reactions—the new type of reactions between complex nuclei Phys. Rep. 44 93-undefined
  • [3] Volkov VV(2020)How to extend the chart of nuclides? Eur. Phys. J. A 56 47-undefined
  • [4] Adamian GG(2008)Production of new heavy isotopes in low-energy multinucleon transfer reactions Phys. Rev. Lett. 101 4074-undefined
  • [5] Antonenko NV(2010)Predicted yields of new neutron rich isotopes of nuclei with Phys. Rev. C 81 429-undefined
  • [6] Diaz-Torres A(1994)–80 in the multinucleon transfer reaction Phys. Rev. Lett. 72 161-undefined
  • [7] Heinz S(2008)Ca+ Phys. Rev. Lett. 100 167-undefined
  • [8] Zagrebaev V(1991)U Annu. Rev. Nucl. Part. Sci. 41 E1-undefined
  • [9] Greiner W(1979)Clear signatures of specific inelastic and transfer channels in the distribution of fusion barriers Nucl. Instrum. Methods 162 199-undefined
  • [10] Adamian GG(2016)Quasielastic barrier distributions: role of particle transfer channels Eur. Phys. J. A 52 224-undefined