Boundary Stabilization of a Thermoelastic Diffusion System of Type II

被引:0
作者
Moncef Aouadi
Imed Mahfoudhi
Taoufik Moulahi
机构
[1] Université de Carthage,Ecole Nationale d’Ingénieurs de Bizerte
[2] Peoples’ Friendship University of Russia (RUDN University),Faculté des Sciences de Monastir
[3] Université de Monastir,Ecole Nationale d’Ingénieurs de Monastir
[4] Université de Monastir,undefined
来源
Acta Applicandae Mathematicae | 2020年 / 169卷
关键词
Thermoelastic diffusion of type II; Well-posedness; Exponential decay; Numerical simulations; 35B40; 65L07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the boundary stabilization of a one-dimensional thermoelastic diffusion problem of type II. The system of equations is a coupling of three hyperbolic equations. This poses some new mathematical and numerical difficulties. With the help of the semigroup theory of linear operators, we prove the well-posedness of the proposed problem. By using the frequency domain method combined with the multiplier technique, we prove the exponential stability of the solutions. Finally, we present a numerical scheme based on the Chebyshev spectral method and we give two numerical examples to validate the proposed model and to show its capability.
引用
收藏
页码:499 / 522
页数:23
相关论文
共 50 条
  • [31] Exponential stability in the theory of thermoelastic diffusion mixtures
    Aouadi, Moncef
    APPLICABLE ANALYSIS, 2012, 91 (12) : 2169 - 2187
  • [32] Qualitative Results in the Theory of Thermoelastic Diffusion Mixtures
    Aouadi, Moncef
    JOURNAL OF THERMAL STRESSES, 2010, 33 (06) : 595 - 615
  • [33] GLOBAL STABILIZATION OF A CLASS OF NONLINEAR REACTION-DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS BY BOUNDARY FEEDBACK
    Karafyllis, Iasson
    Krstic, Miroslav
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (06) : 3723 - 3748
  • [34] Analysis of a thermoelastic problem of type III
    Bazarra, Noelia
    Fernandez, Jose R.
    Quintanilla, Ramon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06)
  • [35] A type III thermoelastic problem with mixtures
    Bazarra, N.
    Fernandez, J. R.
    Quintanilla, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [36] An a priori error analysis of a type III thermoelastic problem with two porosities
    Bazarra, Noelia
    Fernandez, Jose R.
    Quintanilla, Ramon
    Suarez, Sofia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1067 - 1084
  • [37] ON THE DECAY OF A POROUS THERMOELASTIC SYSTEM WITH THERMAL DISSIPATION AND DELAY TERM
    Ahmima, Afaf
    Fareh, Abdelfeteh
    Messaoudi, Salim A.
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2024, 13 (02): : 458 - 477
  • [38] On the existence and exponential decay rate of swelling porous thermoelastic system of Lord-Shulman type
    Apalara, Tijani A.
    Enyi, Cyril D.
    Khan, Yasir
    Ige, Aminat O.
    JOURNAL OF THERMAL STRESSES, 2024, 47 (07) : 937 - 958
  • [39] On a Truncated Thermoelastic Timoshenko System With a Dual-Phase Lag Model
    Messaoudi, Salim A.
    Keddi, Ahmed
    Alahyane, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6691 - 6703
  • [40] PARTIAL EXACT CONTROLLABILITY FOR INHOMOGENEOUS MULTIDIMENSIONAL THERMOELASTIC DIFFUSION PROBLEM
    Aouadi, Moncef
    Boulehmi, Kaouther
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2016, 5 (02): : 201 - 224