Flat and Cotorsion Quasi-Coherent Sheaves. Applications

被引:0
|
作者
Edgar Enochs
S. Estrada
J. R. García-Rozas
L. Oyonarte
机构
[1] University of Kentucky,Department of Mathematics
[2] Universidad de Granada,Departamento de Álgebra
[3] Universidad de Almería,Dept. Álgebra y Análisis Matemático
来源
关键词
flat and cotorsion quasi-coherent sheaf; flat cover; cotorsion envelope;
D O I
暂无
中图分类号
学科分类号
摘要
The study of flat covers and cotorsion envelopes has turned out to be very useful since their existence was proved in [3] for the category of R-modules. The problem is even more interesting in categories of sheaves on a topological space, because these categories do not have enough projectives. But the existence of flat covers and cotorsion envelopes allow us to form flat and cotorsion resolutions to compute cohomology.
引用
收藏
页码:441 / 456
页数:15
相关论文
共 50 条
  • [21] Tensor functors between categories of quasi-coherent sheaves
    Brandenburg, Martin
    Chirvasitu, Alexandru
    JOURNAL OF ALGEBRA, 2014, 399 : 675 - 692
  • [22] Locally torsion-free quasi-coherent sheaves
    Odabasi, Sinem
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (09) : 1760 - 1770
  • [23] QUASI-COHERENT SHEAVES OVER AFFINE HENSEL SCHEMES
    GRECO, S
    STRANO, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 268 (02) : 445 - 465
  • [24] Quasi-coherent sheaves in commutative and non-commutative geometry
    Orlov, DO
    IZVESTIYA MATHEMATICS, 2003, 67 (03) : 535 - 554
  • [25] Topos points of quasi-coherent sheaves over monoid schemes
    Pirashvili, Ilia
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2020, 169 (01) : 31 - 74
  • [26] The derived category of quasi-coherent sheaves and axiomatic stable homotopy
    Alonso Tarrio, Leovigildo
    Jeremias Lopez, Ana
    Perez Rodriguez, Marta
    Vale Gonsalves, Maria J.
    ADVANCES IN MATHEMATICS, 2008, 218 (04) : 1224 - 1252
  • [27] NON-EXACTNESS OF DIRECT PRODUCTS OF QUASI-COHERENT SHEAVES
    Kanda, Ryo
    DOCUMENTA MATHEMATICA, 2019, 24 : 2037 - 2056
  • [28] On the derived category of quasi-coherent sheaves on an Adams geometric stack
    Alonso Tarrio, Leovigildo
    Jeremias Lopez, Ana
    Perez Rodriguez, Marta
    Vale Gonsalves, Maria J.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (04) : 828 - 845
  • [29] Infinite root stacks and quasi-coherent sheaves on logarithmic schemes
    Talpo, Mattia
    Vistoli, Angelo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 1187 - 1243
  • [30] K-flatness in Grothendieck categories: application to quasi-coherent sheaves
    Estrada, Sergio
    Gillespie, James
    Odabasi, Sinem
    COLLECTANEA MATHEMATICA, 2024, 76 (2) : 435 - 454