A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations

被引:0
作者
Mingfa Fei
Guoyu Zhang
Nan Wang
Chengming Huang
机构
[1] Changsha University,School of Computer Engineering and Applied Mathematics
[2] National University of Defense Technology,College of Arts and Sciences
[3] Inner Mongolia University,School of Mathematical Sciences
[4] Zhengzhou University,School of Mathematics and Statistics
[5] Huazhong University of Science and Technology,School of Mathematics and Statistics
[6] Changsha University,Hunan Province Key Laboratory of Industrial Internet Technology and Security
[7] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
来源
Advances in Difference Equations | / 2020卷
关键词
Fractional Schrödinger equation; Legendre spectral method; Conservation law; Unconditional convergence; Spectral accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, based on Galerkin–Legendre spectral method for space discretization and a linearized Crank–Nicolson difference scheme in time, a fully discrete spectral scheme is developed for solving the strongly coupled nonlinear fractional Schrödinger equations. We first prove that the proposed scheme satisfies the conservation laws of mass and energy in the discrete sense. Then a prior bound of the numerical solutions in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }$\end{document}-norm is obtained, and the spectral scheme is shown to be unconditionally convergent in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm, with second-order accuracy in time and spectral accuracy in space. Finally, some numerical results are provided to validate our theoretical analysis.
引用
收藏
相关论文
共 124 条
  • [1] Laskin N.(2000)Fractional quantum mechanics and Lévy path integrals Phys. Lett. A 268 298-305
  • [2] Laskin N.(2002)Fractional Schrödinger equation Phys. Rev. E 66 1117-1120
  • [3] Longhi S.(2015)Fractional Schrödinger equation in optics Opt. Lett. 40 2863-2880
  • [4] Zhang Y.(2015)Propagation dynamics of a light beam in a fractional Schrödinger equation Phys. Rev. Lett. 115 468-477
  • [5] Liu X.(2015)Well-posedness and ill-posedness for the cubic fractional Schrödinger equations Discrete Contin. Dyn. Syst. 35 247-255
  • [6] Belić M.R.(2008)Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation Appl. Math. Comput. 204 342-360
  • [7] Zhong W.(2010)Global well-posedness for the fractional nonlinear Schrödinger equation Commun. Partial Differ. Equ. 36 667-696
  • [8] Zhang Y.(2015)Fractional diffusion on bounded domains Fract. Calc. Appl. Anal. 18 125-149
  • [9] Xiao M.(2012)Analysis and approximation of nonlocal diffusion problems with volume constraints SIAM Rev. 54 2865-2886
  • [10] Cho Y.(2018)Boundary problems for the fractional and tempered fractional operators Multiscale Model. Simul. 16 670-681