Accelerated dynamical approaches for finding the unique positive solution of KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {K}\mathcal {S}$\end{document}-tensor equations

被引:0
作者
Xuezhong Wang
Changxin Mo
Maolin Che
Yimin Wei
机构
[1] Hexi University,School of Mathematics and Statistics
[2] Fudan University,School of Mathematical Sciences
[3] Southwest University of Finance and Economics,School of Economic Mathematics
[4] Fudan University,School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics
关键词
-tensor; Dynamical system; Positive solution; Tensor equation; 15A18; 15A69; 65F15; 65F10;
D O I
10.1007/s11075-021-01095-9
中图分类号
学科分类号
摘要
A new class of tensors called KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {K}\mathcal {S}$\end{document}-tensors, which is a subset of non-singular P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}$\end{document}-tensors and generalization of H+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathscr{H}}^{+}$\end{document}-tensors, is proposed. It is proved that the system of KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {K}\mathcal {S}$\end{document}-tensor equations always has a unique positive solution for any positive right-hand side by proposing a positive increasing map. Two approaches based on dynamical system are presented to find the unique positive solution. The theoretical analysis results show that the convergence of the proposed models is guaranteed, and numerical examples further illustrate that the given models are feasible and effective in finding the positive solution of KS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {K}\mathcal {S}$\end{document}-tensor equations.
引用
收藏
页码:1787 / 1810
页数:23
相关论文
共 95 条
[1]  
Qi L(2005)Eigenvalues of a real supersymmetric tensor J. Symb. Comput. 40 1302-1324
[2]  
Azimzadeh P(2019)High order Bellman equations and weakly chained diagonally dominant tensors SIAM J. Matrix Anal. Appl. 40 276-298
[3]  
Bayraktar E(2016)Solving multi-linear systems with $\mathcal {M}$ℳ-tensors J. Sci. Comput. 68 689-715
[4]  
Ding W(2015)Solving sparse non-negative tensor equations: algorithms and applications Front. Math. China 10 649-680
[5]  
Wei Y(2017)The sparsest solutions to $\mathcal {Z}$Z-tensor complementarity problems Optim. Lett. 11 471-482
[6]  
Li X(2020)Modified gradient dynamic approach to the tensor complementarity problem Optim. Methods Softw. 35 394-415
[7]  
Ng MK(2013)On determinants and eigenvalue theory of tensors J. Symb. Comput. 50 508-531
[8]  
Luo Z(2019)Existence and uniqueness of positive solution for ${\mathscr{H}}^+$H+-tensor equations Appl. Math. Lett. 98 191-198
[9]  
Qi L(2019)Generalized tensor equations with leading structured tensors Appl. Math. Comput. 361 311-324
[10]  
Xiu N(2018)A globally and quadratically convergent algorithm for solving ultilinear systems with $\mathcal {M}$ℳ-tensors J. Sci. Comput. 76 1718-1741