Oscillation Criteria for Second-Order Delay Dynamic Equations on Time Scales

被引:0
作者
Zhenlai Han
Bao Shi
Shurong Sun
机构
[1] Naval Aeronautical Engineering Institute,Institute of Applied Mathematics
[2] Jinan University,School of Science
来源
Advances in Difference Equations | / 2007卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Analysis; Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order nonlinear delay dynamic equations [inline-graphic not available: see fulltext] on a time scale [inline-graphic not available: see fulltext], here [inline-graphic not available: see fulltext] is a quotient of odd positive integers with p and q real-valued positive rd-continuous functions defined on [inline-graphic not available: see fulltext].
引用
收藏
相关论文
共 45 条
  • [1] Hilger S(1990)Analysis on measure chains—a unified approach to continuous and discrete calculus Results in Mathematics 18 18-56
  • [2] Agarwal RP(2002)Dynamic equations on time scales: a survey Journal of Computational and Applied Mathematics 141 1-26
  • [3] Bohner M(2004)Oscillation of second order nonlinear dynamic equations on time scales The Rocky Mountain Journal of Mathematics 34 1239-1254
  • [4] O'Regan D(2002)Oscillation results for second-order linear equations on a time scale Journal of Difference Equations and Applications 8 1061-1071
  • [5] Peterson A(2003)Oscillation criteria for second-order nonlinear dynamic equations on time scales Journal of the London Mathematical Society. Second Series 67 701-714
  • [6] Bohner M(2005)Oscillation criteria of second-order half-linear dynamic equations on time scales Journal of Computational and Applied Mathematics 177 375-387
  • [7] Saker SH(2004)Oscillation of nonlinear dynamic equations on time scales Applied Mathematics and Computation 148 81-91
  • [8] Erbe L(2005)Oscillation of second order delay dynamic equations The Canadian Applied Mathematics Quarterly 13 1-17
  • [9] Erbe L(2004)Oscillation criteria for second-order nonlinear neutral delay dynamic equations Journal of Mathematical Analysis and Applications 300 203-217
  • [10] Peterson A(2005)Some oscillation criteria for first order delay dynamic equations Far East Journal of Applied Mathematics 18 289-304