Regularity and Expansion for Steady Prandtl Equations

被引:0
作者
Yan Guo
Sameer Iyer
机构
[1] Brown University,Division of Applied Mathematics
[2] Princeton University,Department of Mathematics
来源
Communications in Mathematical Physics | 2021年 / 382卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Due to degeneracy near the boundary, the question of high regularity for solutions to the steady Prandtl equations has been a longstanding open question since the celebrated work of Oleinik. We settle this open question in affirmative in the absence of an external pressure. Our method is based on energy estimates for the quotient, q=vu¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q = \frac{v}{\bar{u}}$$\end{document}, u¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{u}$$\end{document} being the classical Prandtl solution, via the linear derivative Prandtl (LDP) equation. As a consequence, our regularity result leads to the construction of Prandtl layer expansion up to any order.
引用
收藏
页码:1403 / 1447
页数:44
相关论文
共 68 条
[1]  
Alexandre R(2015)Well-posedness of the Prandtl equation in Sobolev spaces J. Am. Math. Soc. 28 745-784
[2]  
Wang Y-G(2013)Mathematics and turbulence: where do we stand? J. Turbul. 14 42-76
[3]  
Xu C-J(1980)On the boundary value problem of the biharmonic operator on domains with angular corners Math. Meth. Appl. Sci. 2 556-581
[4]  
Yang T(2012)Hitchhiker’s guide to fractional Sobolev spaces Bull. des Sci. Math. 136 521-573
[5]  
Bardos C(2000)Boundary layer theory and the zero-viscosity limit of the Navier–Stokes equation Acta Math. Sin. (Engl. Ser.) 16 207-218
[6]  
Titi E(1997)Blowup of solutions of the unsteady Prandtl’s equation Comm. Pure Appl. Math. 50 1287-1293
[7]  
Blum H(2008)Vanishing viscosity limit for incompressible flow inside a rotating circle Physica D 237 1324-1333
[8]  
Rannacher R(2010)On the ill-posedness of the Prandtl equation J. Am. Math. Soc. 23 591-609
[9]  
Di Nezza E(2012)Remarks on the ill-posedness of the Prandtl equation Asymptotic Anal. 77 71-88
[10]  
Palatucci G(2016)Recent progresses in the boundary layer theory Disc. Cont. Dyn. Syst. A 36 2521-2583