Sobolev–Morrey spaces related to an ultraparabolic equation

被引:2
作者
Sergio Polidoro
Maria Alessandra Ragusa
机构
[1] Dipartimento di Matematica,
[2] Università di Bologna,undefined
[3] Piazza di Porta S. Donato,undefined
[4] 5,undefined
[5] I-40127 Bologna,undefined
[6] Italy. e mail: polidoro@dm.unibo.it,undefined
[7] Dipartimento di Matematica,undefined
[8] Università di Catania,undefined
[9] Viale A. Doria,undefined
[10] 6,undefined
[11] I-95125 Catania,undefined
[12] Italy. e-mail: maragusa@dipmat.unict.it,undefined
来源
manuscripta mathematica | 1998年 / 96卷
关键词
Mathematics Subject Classification (1991):35B45, 35H05, 46E30, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let us consider the class of hypoelliptic operators\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where z=(x,t) ∈ℝN+1, 0 > m0≤N the coefficients ai,j belong to the space of vanishing mean oscillation functions (VMOL) and B=(bi,j) is a constant real matrix. In this paper we prove that a strong solution to the differential equation Lu=f, with the known term f in the Morrey space Lp, λ, belongs to a suitable Sobolev–Morrey space Sp, λ. Then we prove some Morrey-type imbedding results that give a local Hölder continuity of the solution u.
引用
收藏
页码:371 / 392
页数:21
相关论文
empty
未找到相关数据