Ostrowski and Jensen-type inequalities via (s, m)-convex functions in the second senseOstrowski and Jensen-type inequalities and generalized convexity

被引:0
作者
Miguel José Vivas-Cortez
Jorge Eliecer Hernández Hernández
机构
[1] Pontificia Universidad Católica del Ecuador,Facultad de Ciencias Exactas y Naturales, Escuela de Matemáticas y Física
[2] Universidad Centroccidental Lisandro Alvarado,Decanato de Ciencias Económicas y Empresariales
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Convex function; (; )-convex function; Ostrowski inequality; Jensen integral inequality; 26D15; 26B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a generalization of the classical Ostrowski inequality is obtained for functions, whose first derivative are (s, m)-convex in the second sense, and in a similar form, an integral inequality of Jensen type for (s, m)-convex functions in the second sense is also given.
引用
收藏
页码:287 / 302
页数:15
相关论文
共 37 条
[1]  
Alomari M(2010)Ostrowski type inequalities for functions whose derivatives are Appl. Math. Lett. 23 1071-1076
[2]  
Darus M(2016)-convex in the second sense Appl. Math. Inf. Sci. 10 2045-2053
[3]  
Dragomir SS(1978)Hermite–Hadamard–Fejer type inequalities for strongly Publ. Inst. Math. 23 13-20
[4]  
Cerone P(2004)-convex functions with modulus Demonstratio Math. 37 299-308
[5]  
Bracamonte M(1993), in second sense Studia Univ. Babes-Bolyai Math. 38 21-28
[6]  
Giménez J(1998)Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen Appl. Math. Lett. 11 105-109
[7]  
Vivas-Cortez MJ(2002)Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions Tamkang J. Math. 33 45-55
[8]  
Breckner WW(2014)Some inequalities for m-convex functions J. Math. Inequal. 8 489-495
[9]  
Cerone P(2006)Applications of Ostrowski inequality to the estimation of error bounds for some special means and some numerical quadrature rules Appl. Math. Comput. 173 450-456
[10]  
Dragomir SS(1994)On some new inequalities of Hermite–Hadamard type for Aequ. Math. 48 100-111