Exact Solution of the Problem on a Six‐Constant Jeffreys Model of Fluid in a Plane Channel

被引:14
作者
S. N. Aristov
O. I. Skul'skii
机构
[1] Institute of Continuum Mechanics,
[2] Ural Division,undefined
[3] Russian Academy of Sciences,undefined
关键词
Mathematical Modeling; Mechanical Engineer; Exact Solution; Fluid Flow; Pressure Gradient;
D O I
10.1023/A:1020752101539
中图分类号
学科分类号
摘要
An exact analytic solution of the problem of a generalized viscoelastic Jeffreys fluid flow in a plane channel under the action of a pressure gradient is found. The velocity profiles are obtained in a parametric form with a velocity gradient taken as a parameter. The critical values of the pressure gradient are determined, which, when exceeded, lead to weak tangential discontinuities in the longitudinal velocity profile. When the pressure gradient changes smoothly over some range of parameters, a hysteresis loop emerges on the graph of the flow rate versus the pressure gradient.
引用
收藏
页码:817 / 822
页数:5
相关论文
共 26 条
[11]  
Hatzikiriakos S. G.(undefined)undefined undefined undefined undefined-undefined
[12]  
Den Doelder C. F. J.(undefined)undefined undefined undefined undefined-undefined
[13]  
Koopmans R. J.(undefined)undefined undefined undefined undefined-undefined
[14]  
Molenaar J.(undefined)undefined undefined undefined undefined-undefined
[15]  
Van De Ven A. A. F.(undefined)undefined undefined undefined undefined-undefined
[16]  
Colemann B. D.(undefined)undefined undefined undefined undefined-undefined
[17]  
Dunn J. E.(undefined)undefined undefined undefined undefined-undefined
[18]  
Fosdick R. L.(undefined)undefined undefined undefined undefined-undefined
[19]  
Andreichenko Y. A.(undefined)undefined undefined undefined undefined-undefined
[20]  
Brutyan M. A.(undefined)undefined undefined undefined undefined-undefined